K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

C1: Bình phương 2 vế ta có: \(55-6\sqrt{6}=\left(a+b\sqrt{6}\right)^2\)

<=> \(55-6\sqrt{6}=a^2 +6b^2+2ab\sqrt{6}\)

=>  a2 + 6b2 = 55 và 2ab = - 6

=> a2 + 6b2 = 55   (1)   và ab = -3  => a = -3/b (2)

thế (2) vào (1) ta được : \(\left(-\frac{3}{b}\right)^2+6b^2=55\) => \(9+6b^4=55b^2\)

=> 6b4 - 55b2 + 9 = 0 => 6b4 - 54b- b+ 9 =0 <=> 6b2.(b2 - 9) - (b2 - 9) = 0 <=> (6b2 - 1).(b- 9 ) = 0 

<=> b= 1/6 (Loại; vì b nguyên )  hoặc b= 9 

+) b2 = 9 => a= 1 => a = 1 hoặc - 1 ; b = 3 hoặc - 3

Do \(a+b\sqrt{6}\) > 0  và a; b trái dấu nên a =  -1; b = 3 => a+ b = 2

Vậy a +  b  = 2

C2\(\sqrt{55-6\sqrt{6}}=\sqrt{\left(3\sqrt{6}\right)^2-2.3\sqrt{6}.1+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}\)

\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)

=> a = -1; b = 3 => a + b = 2

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

10 tháng 7 2017

Ta có :

a)\(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}-\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)

b)\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)

c)\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

a)

\(\frac{4}{\sqrt{10}}(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})=\frac{4}{\sqrt{20}}(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}})\)

\(=\frac{4}{2\sqrt{5}}(\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}})=\frac{2}{\sqrt{5}}[\sqrt{(\sqrt{5}+1)^2}+\sqrt{(\sqrt{5}-1)^2}]\)

\(=\frac{2}{\sqrt{5}}(\sqrt{5}+1+\sqrt{5}-1)=\frac{2}{\sqrt{5}}.2\sqrt{5}=4\)

b)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})\)

\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

c)

\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+8\sqrt{3}+18}=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(3+1+2\sqrt{3})+2}\)

\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(\sqrt{3}+1)^2+2}\)

\(=\sqrt{(2\sqrt{3}+2)^2+(\sqrt{2})^2+2.(2\sqrt{3}+2).\sqrt{2}}\)

\(=\sqrt{(2\sqrt{3}+2+\sqrt{2})^2}=2\sqrt{3}+2+\sqrt{2}\)

9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)

=9-3=6

13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)

\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)

a) Ta có: \(\sqrt{96}\cdot\sqrt{125}\)

\(=\sqrt{16}\cdot\sqrt{6}\cdot\sqrt{25}\cdot\sqrt{5}\)

\(=20\cdot\sqrt{30}\)

b) Ta có: \(\sqrt{a^4\cdot6^5}\)

\(=a^2\cdot36\cdot\sqrt{6}\)

c) Ta có: \(\sqrt{a^6\cdot b^{11}}\)

\(=\sqrt{a^6}\cdot\sqrt{b^{11}}\)

\(=\left|a^3\right|\cdot\left|b^5\right|\cdot\sqrt{b}\)

\(=a^3b^5\cdot\sqrt{b}\)

d) Ta có: \(\sqrt{a^3\left(1-a\right)^4}\)

\(=\sqrt{a^3}\cdot\sqrt{\left(1-a\right)^4}\)

\(=a\sqrt{a}\cdot\left(1-a\right)^2\)

1 tháng 10 2015

căn(55-6 căn 6)=a+b căn 6 <=> căn(54-2*3 căn 6+1)=a+b căn 6 
<=>căn(3 căn 6-1)^2=a+b căn 6 <=> TH1: 3 căn 6 -1=a+b căn 6 => a=-1 , b= 3 
TH2: 1- 3 căn 5=a+b căn 6 => a=1 , b= -3