K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

  S = (30/2 + 1/2) + (31/2 + 1/2) + (32/2 + 1/2) + (33/2 + 1/2) +..+ 3n-1/2 + 1/2 

S = n.(1/2) + (1/2)[3^0 + 3^1 + 32 +...+ 3n-1

S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4 

14 tháng 4 2017

S = (30/2 + 1/2) + (31/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3(n-1)/2 + 1/2 

S = n.(1/2) + (1/2)[30 + 31 + 3² +...+ 3(n-1)


S = n/2 + (3n - 1)/4 = (3n + 2n - 1)/4

 S = (3^0/2 + 1/2) + (3^1/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3^(n-1)/2 + 1/2 

S = n.(1/2) + (1/2)[3^0 + 3^1 + 3² +...+ 3^(n-1)] 

S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4 

mình lớp 5 mong bạn thông cảm và

25 tháng 3 2017

\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)

\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)

\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)

Đặt \(A=1+3+3^2+....+3^{x-1}\)

\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)

\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)

1 tháng 11 2023

Câu 13

S = 1 + 2 + 2² + ... + 2¹⁰

2S = 2 + 2² + 2³ + ... + 2¹¹

S = 2S - S

= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)

= 2¹¹ - 1

= 2048 - 1

= 2047

1 tháng 11 2023

Câu 14

3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8

Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)

⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}

⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}

Mà n là số tự nhiên

⇒ n ∈ {0; 1; 3; 4; 6; 10}