Chứng minh: A= 22011969 + 11969220 +69220119 chia hết cho 102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : |3-x|=3-x nếu 3-x> hoặc =0 hay x> hoặc =3; |3-x|=x-3 nếu 3-x<0 hay x<3
Th1: Với x > hoặc =3 thì ta có:3-x=1-3x=>1-3x+x=3=>1-2x=3=>2x=-2=>x=-1(loại vì không thỏa mãn điều kiện x>3)
Th2: với x<3 thì ta có: x-3=1-3x=>x-1+3x=3=>4x=4=>x=1(thỏa mãn điều kiện x<3)
vậy x=1
\(8^{102}-2^{102}\)\(=2^{102}.4^{102}-2^{102}=2^{102}.\left(4^{102}-1\right)\)
Do 4 mũ chẵn có tận cùng là 6
\(\Rightarrow4^{102}\)có tận cùng là 6
\(\Rightarrow4^{102}-1\)có tận cùng là 5\(\Rightarrow4^{102}-1⋮5\)
Vì \(2^{102}⋮2\)\(\Rightarrow2^{102}.\left(4^{102}-1\right)⋮10\)
hay \(8^{102}-2^{102}⋮10\)\(\left(đpcm\right)\)
~~~Hok tốt~~~
Ta có :
\(8^{102}-2^{102}\)
\(=\left(8^4\right)^{25}.8^2-\left(2^4\right)^{25}.2^2\)
\(=\left(...6\right)^{25}.64-16^{25}.4\)
\(=\left(...6\right)^{25}.64-\left(...6\right)^{25}.4\)
\(=\left(...6\right).64-\left(...6\right).4\)
\(=\left(...4\right)-\left(...4\right)\)
\(=\left(...0\right)⋮10\)
Vậy \(8^{102}-2^{102}⋮10\rightarrowđpcm\)
Ta có: \(8^{102}-2^{102}\)
\(=2^{102}\cdot4^{102}-2^{102}\)
\(=2^{102}\cdot\left(4^{102}-1\right)\)
Vì 4 mũ chẵn có tận cùng là 6
\(\Rightarrow4^{102}\) có tận cùng là 6
\(\Rightarrow\left(4^{102}-1\right)\) có tận cùng là 5
\(\Rightarrow\left(4^{102}-1\right)⋮5\)
mà \(2^{102}⋮2\)
\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮2;5\)
\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮10\)
\(\Rightarrow8^{102}-2^{102}⋮10\left(đpcm\right)\)
Giải:
\(102=2.3.17\)
Ta có:
\(220\equiv0\left(mod2\right)\) nên \(220^{11969}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\) nên \(119^{69220}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\) nên \(69^{220119}\equiv-1\left(mod2\right)\)
\(\Rightarrow A\equiv0\left(mod2\right)\) Hay \(A⋮2\)
Tương tự ta cũng có: \(\left\{{}\begin{matrix}A⋮3\\A⋮17\end{matrix}\right.\)
Mà \(\left(2;3;17\right)=1\Rightarrow A⋮2.3.17=102\)
Vậy \(A=220^{11969}+119^{69220}+69^{220119}⋮102\) (Đpcm)
có thể k dùng mod được k ạ