K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Ta có :

\(8^{102}-2^{102}\)

\(=\left(8^4\right)^{25}.8^2-\left(2^4\right)^{25}.2^2\)

\(=\left(...6\right)^{25}.64-16^{25}.4\)

\(=\left(...6\right)^{25}.64-\left(...6\right)^{25}.4\)

\(=\left(...6\right).64-\left(...6\right).4\)

\(=\left(...4\right)-\left(...4\right)\)

\(=\left(...0\right)⋮10\)

Vậy \(8^{102}-2^{102}⋮10\rightarrowđpcm\)

Ta có: \(8^{102}-2^{102}\)

\(=2^{102}\cdot4^{102}-2^{102}\)

\(=2^{102}\cdot\left(4^{102}-1\right)\)

Vì 4 mũ chẵn có tận cùng là 6

\(\Rightarrow4^{102}\) có tận cùng là 6

\(\Rightarrow\left(4^{102}-1\right)\) có tận cùng là 5

\(\Rightarrow\left(4^{102}-1\right)⋮5\)

\(2^{102}⋮2\)

\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮2;5\)

\(\Rightarrow2^{102}\cdot\left(4^{102}-1\right)⋮10\)

\(\Rightarrow8^{102}-2^{102}⋮10\left(đpcm\right)\)

7 tháng 3 2018

a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11

Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.

b. Đề bài sai

Chúc bạn học tốt!

8 tháng 3 2018

Một lần nữa cảm ơn truong huy hoang nhé!

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

7 tháng 10

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:
Ký hiệu $\text{BS9}$ là bội số của $9$

Ta có:

$10^{10}+2=(9+1)^{10}+2=(\text{BS9}+1)+2=\text{BS9}+3\not\vdots 9$ do $3\not\vdots 9$

Mặt khác:

$10^{10}+2=\text{BS9}+3=\text{BS3}+3=\text{BS3}\vdots 3$

Do đó $10^{10}+2$ chia hết cho $3$ nhưng không chia hết cho $9$

16 tháng 6 2015

a,abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=(9999ab+99cd)+(ab+cd+eg)

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)

=>đpcm

b đợi tí chưa nghĩ ra

 

a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra