A=4x^4+6x^2y^2+2x^2+20y^2
Tính A khi x^2+y^2=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4x^2+6x^2y^2+2y^4+20y^2\)
\(=4x^2+4x^2y^2+2x^2y^2+2y^4+20y^2\)
\(=4x^2.\left(x^2+y^2\right)+2y^2.\left(x^2+y^2\right)+20y^2\)
\(=\left(x^2+y^2\right).\left(4x^2+2y^2\right)+20y^2\)
Bí >>>
A=4x^4+6x^2y^2+2x^2+20y^2
(''^'' là mũ nha!!!!)
Tính A khi x^2+y^2=10
Giúp mk với mk đang cần gấp!!!
sorry
đay là đúng nè
4x4+6x2y2+2x2+20y2
=4x4+4x2y2+2x2y2+3x2+20y2
=4x2(x2+y2)+2y2(x2+y2)+ 20y2
=4x2.10+2y2.10+ 20y2
=40x2+20y2+ 20y2
=40x2+40y2
=40. (x2+y2)
=40.10=400
Lời giải:
$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$
$=4x^2.10+2y^2.10+20y^2$
$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)