Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4x^2+6x^2y^2+2y^4+20y^2\)
\(=4x^2+4x^2y^2+2x^2y^2+2y^4+20y^2\)
\(=4x^2.\left(x^2+y^2\right)+2y^2.\left(x^2+y^2\right)+20y^2\)
\(=\left(x^2+y^2\right).\left(4x^2+2y^2\right)+20y^2\)
Bí >>>
Lời giải:
$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$
$=4x^2.10+2y^2.10+20y^2$
$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$
a)Ta có 7x=2y
Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)
Và x-y=16
Áp dụng công thức của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)
Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)
\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)
c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Mà a+2b-c=-20
Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)
Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)
\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)
\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)
Vậy a=-10,b=-15,c=-20
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)