Chứng minh 22225555+55552222 chia hết cho 7(giải theo đồng dư thức)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)
5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)
=>22225555 =55552222 = (-4)5555 +42222 (mod 7)
Mà 42222 =(-4)2222 => (-4)5555 +42222 = (-4)2222 + 43333 x 42222
=(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)
Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)
Nên (-4)5555 +42222 = 0(mod 7)
Từ (1) và (2) =>22225555 +55552222 chia hết cho 7
biết 1890 chia hết cho 7
1945+1 =1946 chia hết cho 7
1946+1890=3836 cũng chia hết cho 7
số mũ =a x a x a x.......
mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7
Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )
=> 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )
=> 4n = 3k + 1 ( k thuộc N )
=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )
=> 8k \(\equiv\)1 ( mod7 )
=> 2 . 8k \(\equiv\)2 ( mod7 )
Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )
Mà 5 \(\equiv\)- 2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )
Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )