c/m n 3  + 6n2  + 8n chia hết cho 48 với n chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik
n chẵn => n = 2k (k \(\in\)N)
n3 + 6n2 + 8n = (2k)3 + 6.(2k)2 + 8.(2k) = 8k3 + 24.k2 + 16k = 8k. (k2 + 3k + 2) = 8k.(k2 + 2k + k + 2)
= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)
Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6
=> 8k.(k+1).(k+2) chia hết cho 8.6 = 48
=> n3 + 6n2 + 8n chia hết cho 48
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
n3 + 6n2 + 8n = n(n+2)(n+4) (1)
Vì n chẵn nên n = 2k
(1) = 8k(k+1)(k+2)
Ta thấy k(k+1)(k+2) là ba số tự nhiên liên tiếp nên chia hết cho 6 vậy n3 + 6n2 + 8n chia hết cho 6×8 = 48
\(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left[n^2\left(n+6\right)+8\right]\)\(=n\left[n\left(n+4+2\right)+8\right]=n\left[n\left(n+4\right)+2n+8\right]\)\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]=n\left(n+2\right)\left(n+4\right)\)(1)
Vì n là số chẵn nên n=2k(k thuộc n)(2)
Thế (2) vào (1),ta có:
\(2k\left(2k+2\right)\left(2k+4\right)=8k\left(k+1\right)\left(k+2\right)\)
Vì k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên biểu thức trên chia hết cho 6 và vì biểu thức trên có nhân tử là 8 nên nó chia hết cho 8 và sẽ chia hết cho 48
n chẵn => n = 2k (k ∈N)
n3 + 6n2 + 8n = (2k)3 + 6.(2k)2 + 8.(2k) = 8k3 + 24.k2 + 16k = 8k. (k2 + 3k + 2) = 8k.(k2 + 2k + k + 2)
= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)
Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6
=> 8k.(k+1).(k+2) chia hết cho 8.6 = 48
=> n3 + 6n2 + 8n chia hết cho 48
\(A=n^3+6n^2+8n\\ =n\left(n^2+6n+8\right)\\ =n\left(n+2\right)\left(n+4\right)\)
n chẵn => n + 2; n + 4 chẵn => A là tích của 3 số chẵn liên tiếp => A chia hết cho 48 (đpcm)
phân tích thành n(n+2)(n+4).
vì n chẵn => n= 2k (k là số tự nhiên)
=> n(n+2)(n+4)= 8k(k+1)(k+2) chia hết cho 8 (1)
mặt khác k(k+1)(k+2) chia hết cho 2 và 3 ( tự mà ch.minh)
=> k(k+1)(k+2) chia hết cho 6 (2)
từ(1) và (2) => đpcm