K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Hình bạn tự vẽ nha

Chứng minh

a, Xét \(\Delta AHC\)\(\Delta DHC\) có :

HC chung

\(\widehat{AHC}=\widehat{DHC}\) (=1v)

AH = DH (gt)

\(\Rightarrow\Delta AHC=\Delta DHC\) (c.g.c)

b, Áp dụng định lí Py-ta-go vào \(\Delta ABC\) vuông tại A , ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=100-36=64\)

\(\Rightarrow AC=8\)cm

c,Gọi giao điểm của AC và DE là I

Xét \(\Delta AHB\)\(\Delta DHE\) có :

AH = HD (gt)

\(\widehat{AHB}=\widehat{DHE}\) ( đối đỉnh )

HB = HE (gt)

\(\Rightarrow\Delta AHB=\Delta DHE\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{EDH}\) ( ở vị trí đồng vị )

\(\Rightarrow\) AB // DE

\(\Rightarrow\widehat{BAI}+\widehat{AID}=180^o\) hay \(90^o+\widehat{AID}=180^O\)

\(\Rightarrow\widehat{AID}=90^O\)

\(\Rightarrow DE\perp AC\)

d, Xét \(\Delta AHB\)\(\Delta AHE\) có :

AH chung

\(\widehat{AHB}=\widehat{AHE}\) (=1v)

BH = HE (gt)

\(\Rightarrow\Delta AHB=\Delta AHE\) ( c.g.c )

\(\Rightarrow AB=AE\) (hai cạnh tương ứng ) (1)

\(\Delta AHC=\Delta DHC\) (câu a )

\(\Rightarrow AC=CD\) ( hai cạnh tương ứng ) (2)

Từ (1) và (2) \(\Rightarrow AB+AC=AE+CD\)

mà AB + AC > BC ( bất đẳng thức trong tam giác )

\(\Rightarrow AE+CD>BC\)

1 tháng 1 2018

a, Xét ΔAHCΔAHCΔDHCΔDHC có :

HC chung

AHCˆ=DHCˆAHC^=DHC^ (=1v)

AH = DH (gt)

ΔAHC=ΔDHC⇒ΔAHC=ΔDHC (c.g.c)

b, Áp dụng định lí Py-ta-go vào ΔABCΔABC vuông tại A , ta có :

BC2=AB2+AC2BC2=AB2+AC2

AC2=BC2AB2=10262=10036=64⇒AC2=BC2−AB2=102−62=100−36=64

AC=8⇒AC=8cm

c,Gọi giao điểm của AC và DE là I

Xét ΔAHBΔAHBΔDHEΔDHE có :

AH = HD (gt)

AHBˆ=DHEˆAHB^=DHE^ ( đối đỉnh )

HB = HE (gt)

ΔAHB=ΔDHE(c.g.c)⇒ΔAHB=ΔDHE(c.g.c)

BAHˆ=EDHˆ⇒BAH^=EDH^ ( ở vị trí đồng vị )

AB // DE

BAIˆ+AIDˆ=180o⇒BAI^+AID^=180o hay 90o+AIDˆ=180O90o+AID^=180O

AIDˆ=90O⇒AID^=90O

DEAC⇒DE⊥AC

d, Xét ΔAHBΔAHBΔAHEΔAHE có :

AH chung

AHBˆ=AHEˆAHB^=AHE^ (=1v)

BH = HE (gt)

ΔAHB=ΔAHE⇒ΔAHB=ΔAHE ( c.g.c )

AB=AE⇒AB=AE (hai cạnh tương ứng ) (1)

ΔAHC=ΔDHCΔAHC=ΔDHC (câu a )

AC=CD⇒AC=CD ( hai cạnh tương ứng ) (2)

Từ (1) và (2) AB+AC=AE+CD⇒AB+AC=AE+CD

mà AB + AC > BC ( bất đẳng thức trong tam giác )

AE+CD>BC

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có

CH chung

HA=HD

DO đó: ΔHAC=ΔHDC

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:

a. Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm) 

b.

Theo đề thì $AD\perp BC$ và $AD\perp BC$ tại trung điểm $H$ của $AD$ nên $BC$ là đường trung trực của $AD$

$\Rightarrow CD=CA$

Xét tam giác $AHC$ và $DHC$ có:
$AH=DH$ (gt) 
$HC$ chung 

$AC=DC$ (cmt) 

$\Rightarrow \triangle AHC=\triangle DHC$ (c.c.c)

 

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Hình vẽ:

7 tháng 6 2021

Số đo bằng 60 độ hay 600 ạ

60 độ nhé 

10 tháng 5 2017

A B C H D E

a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)

Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2

=> AC2=64 (cm) => AC2=8=> AC=8 (cm).

b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD

=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)

c) Nối E với D.

Xét \(\Delta\)AHB và \(\Delta\)EHD:

HB=HD

^AHB=^EHD=900  => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)

HA=HE

=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED

Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)

Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC 

=> AD \(⊥\)EC (đpcm)

10 tháng 5 2017

A B C

a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

102 = 62 + AC2

=> AC2 = 100 - 36 = 64

=> AC =8

a: HB=HC=căn 10^2-8^2=6cm

b: Xét ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD can tại B

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá