Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD.
a, Chứng minh tam giác AHC = tam giác DHC
b, Cho BC = 10cm, AB = 6cm. Tính độ dài cạnh AC
c, Trên HC lấy điểm E sao cho HE = HB. Chứng minh tam giác AHB = tam giác DHE và DE vuông góc với AC
d, Chứng minh AE + CD > BC
Hình bạn tự vẽ nha
Chứng minh
a, Xét \(\Delta AHC\) và \(\Delta DHC\) có :
HC chung
\(\widehat{AHC}=\widehat{DHC}\) (=1v)
AH = DH (gt)
\(\Rightarrow\Delta AHC=\Delta DHC\) (c.g.c)
b, Áp dụng định lí Py-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=100-36=64\)
\(\Rightarrow AC=8\)cm
c,Gọi giao điểm của AC và DE là I
Xét \(\Delta AHB\) và \(\Delta DHE\) có :
AH = HD (gt)
\(\widehat{AHB}=\widehat{DHE}\) ( đối đỉnh )
HB = HE (gt)
\(\Rightarrow\Delta AHB=\Delta DHE\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{EDH}\) ( ở vị trí đồng vị )
\(\Rightarrow\) AB // DE
\(\Rightarrow\widehat{BAI}+\widehat{AID}=180^o\) hay \(90^o+\widehat{AID}=180^O\)
\(\Rightarrow\widehat{AID}=90^O\)
\(\Rightarrow DE\perp AC\)
d, Xét \(\Delta AHB\) và \(\Delta AHE\) có :
AH chung
\(\widehat{AHB}=\widehat{AHE}\) (=1v)
BH = HE (gt)
\(\Rightarrow\Delta AHB=\Delta AHE\) ( c.g.c )
\(\Rightarrow AB=AE\) (hai cạnh tương ứng ) (1)
\(\Delta AHC=\Delta DHC\) (câu a )
\(\Rightarrow AC=CD\) ( hai cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow AB+AC=AE+CD\)
mà AB + AC > BC ( bất đẳng thức trong tam giác )
\(\Rightarrow AE+CD>BC\)
a, Xét ΔAHCΔAHC và ΔDHCΔDHC có :
HC chung
AHCˆ=DHCˆAHC^=DHC^ (=1v)
AH = DH (gt)
⇒ΔAHC=ΔDHC⇒ΔAHC=ΔDHC (c.g.c)
b, Áp dụng định lí Py-ta-go vào ΔABCΔABC vuông tại A , ta có :
BC2=AB2+AC2BC2=AB2+AC2
⇒AC2=BC2−AB2=102−62=100−36=64⇒AC2=BC2−AB2=102−62=100−36=64
⇒AC=8⇒AC=8cm
c,Gọi giao điểm của AC và DE là I
Xét ΔAHBΔAHB và ΔDHEΔDHE có :
AH = HD (gt)
AHBˆ=DHEˆAHB^=DHE^ ( đối đỉnh )
HB = HE (gt)
⇒ΔAHB=ΔDHE(c.g.c)⇒ΔAHB=ΔDHE(c.g.c)
⇒BAHˆ=EDHˆ⇒BAH^=EDH^ ( ở vị trí đồng vị )
⇒⇒ AB // DE
⇒BAIˆ+AIDˆ=180o⇒BAI^+AID^=180o hay 90o+AIDˆ=180O90o+AID^=180O
⇒AIDˆ=90O⇒AID^=90O
⇒DE⊥AC⇒DE⊥AC
d, Xét ΔAHBΔAHB và ΔAHEΔAHE có :
AH chung
AHBˆ=AHEˆAHB^=AHE^ (=1v)
BH = HE (gt)
⇒ΔAHB=ΔAHE⇒ΔAHB=ΔAHE ( c.g.c )
⇒AB=AE⇒AB=AE (hai cạnh tương ứng ) (1)
ΔAHC=ΔDHCΔAHC=ΔDHC (câu a )
⇒AC=CD⇒AC=CD ( hai cạnh tương ứng ) (2)
Từ (1) và (2) ⇒AB+AC=AE+CD⇒AB+AC=AE+CD
mà AB + AC > BC ( bất đẳng thức trong tam giác )
⇒AE+CD>BC