K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

có : \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Leftrightarrow x-2\sqrt{xy}+y\ge0\)

\(\Leftrightarrow2x+2y\ge x+2\sqrt{xy}+y\)

\(\Leftrightarrow2\left(x+y\right)\ge\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Leftrightarrow\sqrt{2}\cdot\sqrt{x+y}\ge\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y}\ge\frac{\sqrt{x}+\sqrt{y}}{\sqrt{2}}\)

áp dụng vào ta có :  

\(\sqrt{\frac{a+b}{c}}=\sqrt{\frac{a}{c}+\frac{b}{c}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{a}{c}}+\sqrt{\frac{b}{c}}\right)\)

\(\sqrt{\frac{b+c}{a}}=\sqrt{\frac{b}{a}+\frac{c}{a}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{a}}\right)\)

\(\sqrt{\frac{c+a}{b}}=\sqrt{\frac{c}{b}+\frac{a}{b}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{b}}\right)\)

\(\Rightarrow VT\ge\frac{1}{\sqrt{2}}\left[\sqrt{a}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\sqrt{b}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{c}}\right)+\sqrt{c}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\right]\)

áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :

\(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a}\cdot\frac{4}{\sqrt{b}+\sqrt{c}}+\sqrt{b}\cdot\frac{4}{\sqrt{a}+\sqrt{c}}+\sqrt{c}\cdot\frac{4}{\sqrt{a}+\sqrt{b}}\right)\)

có \(\hept{\begin{cases}\sqrt{b}+\sqrt{c}\le\sqrt{2\left(b+c\right)}\\\sqrt{a}+\sqrt{c}\le\sqrt{2\left(a+c\right)}\\\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\end{cases}}\)  nên \(\hept{\begin{cases}\frac{4}{\sqrt{b}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(b+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(a+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{b}}\ge\frac{4}{\sqrt{2\left(a+b\right)}}\end{cases}}\)

\(\Rightarrow vt\ge2\cdot\left(\sqrt{\frac{a}{c+b}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}\right)\)

dấu = xảy ra khi a=b=c

17 tháng 8 2021

sao dòng 9 cs vậy bạn, sao VT lại >=1/ căn 2

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33 

26 tháng 4 2017

nhân biểu thức liêng hợp ở mẫu là ra

21 tháng 5 2021

Áp dụng bất đẳng thức \(\sqrt{\left(x+y\right)\left(m+n\right)}\ge\sqrt{xm}+\sqrt{yn}\) , có :

\(\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự và cộng lại ta được :

\(VT\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh !

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ