K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
T
10 tháng 7 2019
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
có : \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Leftrightarrow x-2\sqrt{xy}+y\ge0\)
\(\Leftrightarrow2x+2y\ge x+2\sqrt{xy}+y\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\Leftrightarrow\sqrt{2}\cdot\sqrt{x+y}\ge\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\sqrt{x+y}\ge\frac{\sqrt{x}+\sqrt{y}}{\sqrt{2}}\)
áp dụng vào ta có :
\(\sqrt{\frac{a+b}{c}}=\sqrt{\frac{a}{c}+\frac{b}{c}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{a}{c}}+\sqrt{\frac{b}{c}}\right)\)
\(\sqrt{\frac{b+c}{a}}=\sqrt{\frac{b}{a}+\frac{c}{a}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{a}}\right)\)
\(\sqrt{\frac{c+a}{b}}=\sqrt{\frac{c}{b}+\frac{a}{b}}\ge\frac{1}{\sqrt{2}}\left(\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{b}}\right)\)
\(\Rightarrow VT\ge\frac{1}{\sqrt{2}}\left[\sqrt{a}\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\sqrt{b}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{c}}\right)+\sqrt{c}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\right]\)
áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a}\cdot\frac{4}{\sqrt{b}+\sqrt{c}}+\sqrt{b}\cdot\frac{4}{\sqrt{a}+\sqrt{c}}+\sqrt{c}\cdot\frac{4}{\sqrt{a}+\sqrt{b}}\right)\)
có \(\hept{\begin{cases}\sqrt{b}+\sqrt{c}\le\sqrt{2\left(b+c\right)}\\\sqrt{a}+\sqrt{c}\le\sqrt{2\left(a+c\right)}\\\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\end{cases}}\) nên \(\hept{\begin{cases}\frac{4}{\sqrt{b}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(b+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{c}}\ge\frac{4}{\sqrt{2\left(a+c\right)}}\\\frac{4}{\sqrt{a}+\sqrt{b}}\ge\frac{4}{\sqrt{2\left(a+b\right)}}\end{cases}}\)
\(\Rightarrow vt\ge2\cdot\left(\sqrt{\frac{a}{c+b}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+a}}\right)\)
dấu = xảy ra khi a=b=c
sao dòng 9 cs vậy bạn, sao VT lại >=1/ căn 2