K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

a2b+ab2-2abc +b2c+bc2-2abc+ac2+a2c-2abc

=b(a2-2ac+c2) +a(b2-2bc+c2)+c (a2-2ab+b2)

= b(a-c)2+a(b-c)2+c(a-b)2 vì a,b,c là độ dài ba cạnh tam giác=) a,b,c>0

b(a-c)2\(\ge0\) \(\forall a,b,c\)

a(b-c)2\(\ge0\)\(\forall a,b,c\)

c(a-b)2\(\ge0\forall a,b,c\)

26 tháng 7 2019

\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)

Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)

\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)

\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)

\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)

cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link 

17 tháng 6 2016

undefined

17 tháng 6 2016

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3

=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)

=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)

áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:

a+b>c

=>a+b-c>0

b+c>a

=>b+c-a>0

c+a>b

=>c+a-b>0

=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0

=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0

=>đpcm

8 tháng 2 2016

a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3

=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)

=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)

áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:

a+b>c

=>a+b-c>0

b+c>a

=>b+c-a>0

c+a>b

=>c+a-b>0

=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0

=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0

=>đpcm

19 tháng 8 2017

ai giai giup voi

16 tháng 6 2016

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

16 tháng 6 2016

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)