K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Ta có:

A = (x + 1)(y + 1)

=> A = xy + x + y +1

=> A = 1 + x + y + 1

=> A = 2 + x + y

Vì x > 0 ; y > 0

=>x \(\ge\)1; y\(\ge\)1

=> x + y \(\ge\)2

=> 2 + x + y \(\ge\)4

hay A \(\ge\)4

10 tháng 3 2017

Bạn kia sai rồi 

x > 0 ; y > 0 thì chưa chắc \(x\ge1;y\ge1\) được

Mình giải các bạn tham khảo nhé :

\(A=\left(x+1\right)\left(y+1\right)=x\left(y+1\right)+\left(y+1\right)=xy+x+y+1\)

\(=1+x+y+1=2+x+y\)

Ta lại có : \(x+y\ge2\sqrt{xy}=2.1=2\) ( bất đẳng thức cosi )

Dấu "=" xảy ra <=> \(x=y\)

\(\Rightarrow2+x+y\ge2+2=4\) 

\(\Rightarrow A\ge4\) (Đpcm)

9 tháng 3 2017

hiiii| mình chẳng hiểu gì cả sorrycậu nhes

24 tháng 10 2016

\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2a=3\\\frac{3}{4}a=-1\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)

24 tháng 10 2016

\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)

<=> \(\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)

14 tháng 3 2018

mk nhầm nhé xy khác o

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

11 tháng 12 2023

Bài 1: 

a,  \(x^2\) +2\(x\) = 0

     \(x.\left(x+2\right)\) = 0

     \(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

      \(x\) \(\in\) {-2; 0}

b, (-2.\(x\)).(-4\(x\)) + 28  = 100

      8\(x^2\)           + 28  = 100

        8\(x^2\)                   = 100 - 28

        8\(x^2\)                   = 72

          \(x^2\)                  = 72 : 8

          \(x^2\)                   = 9

           \(x^2\)                  = 32

          |\(x\)|                  = 3

          \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\) 

Vậy \(\in\) {-3; 3}

11 tháng 12 2023

c, 5.\(x\) (-\(x^2\)) + 1 = 6

   - 5.\(x^3\)       + 1 = 6

   5\(x^3\)                 = 1 - 6

   5\(x^3\)                 = - 5

    \(x^3\)                  =  -1

    \(x\)                    =  - 1

   

AH
Akai Haruma
Giáo viên
20 tháng 1

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

30 tháng 12 2017

Ta có: \(4xy\le\left(x+y\right)^2\)

Lại có: \(x;y>0\)

\(\Rightarrow\left(x+y\right)^2xy>0\)

\(\Rightarrow\frac{4xy}{\left(x+y\right)^2xy}\le\frac{\left(x+y\right)^2}{\left(x+y\right)^2xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)

30 tháng 12 2017

Ta có :

\(\left(x+y\right)^2-4xy\)

\(=x^2+2xy+y^2-4xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

Lại có : \(x,y>0\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{4}{4xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)<đpcm>