cho tam giác ABC với M,N lần lượt là trung điểm của hai cạnh AB,AC. xác định độ dài của vec tơ AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đo độ dài rồi viết tiếp vào chỗ chấm:
- Độ dài cạnh AB là 4cm.
- Độ dài cạnh AC là 6cm.
b) Xác định trung điểm P của canh AB và trung điểm Q của cạnh AC.
Nối BN.
*Xét tam giác AMN và tam giác ABN có :
- Đáy AM = 1/2 đáy AB
- Chung chiều cao hạ từ đỉnh N
=> S tam giác AMN = 1/2 S tam giác ABN
S tam giác ABN là 4 : 1/2 = 8 (cm2)
* Xét tam giác ABN và tam giác ABC có:
- Đáy AN = 1/2 Đáy AC
- Chung chiều cao hạ từ đỉnh B
=> S tam giác ABN = 1/2 S tam giác ABC
S tam giác ABC là : 8 : 1/2 = 16 (cm2)
Đáp số 16 cm2
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=
mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)
S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)
2) ABC vuông tại A ( 62+82 =102)
M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại I
=> OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)
câu 2 ; theo đề bài ta có tam giác ABC vuông tại A
VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]
Do đó OI song song với AB[cùng vuông góc với AC]
theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)
mà IC=AC =8/2=4 cm
thay vào giải ra OI=6*4/8=3 cm
còn câu 1 tớ cũng đang định hỏi đây
Mình vẫn chưa thấy vai trò của $M,N$ trong bài toán này. Bạn xem lại đề.