Cho hình bình hành ABCD trên đường chéo AC lấy I tia DI cắt đường thẳng AB tại M, BC tại N. CM: a, AM/AB=DM/DN=CB/CN
b, ID2=IM.IN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AD // BC (gt)
b) Xét ΔAMB và ΔNAD có:
∠BAM = ∠ AND (so le trong, AB // CD)
∠ABM = ∠ADN (góc đối của hình bình hành)
⇒ ΔAMB ∼ ΔNAD (g.g)
c) ΔAMB ∼ ΔNAD (cmt)
Do đó: CN = DN – DC = 12 – 8 = 4 (cm)
d) Do AB //CD nên theo hệ quả định lí Ta-lét, ta có
Tương tự, do AD // BM nên
a)
Áp dụng Ta-lét vào tam giác ADM và MNB,vì AD//BN,ta có: \(\frac{AM}{MB}=\frac{DM}{DN}\)(1)
Áp dụng Ta-lét vào tam giác DNC ,vì MB//DC, ta có : \(\frac{DM}{DN}=\frac{CB}{CN}\)(2)
Từ (1),(2), ta có: \(\frac{AM}{MB}=\frac{DM}{DN}=\frac{CB}{CN}\)(đpcm)
b)
Áp dụng Ta-lét vào tam giác AMI và IDC,vì AM//DC ,ta có: \(\frac{DI}{IM}=\frac{IC}{AI}\)(1)
Áp dụng Ta-lét vào tam giác IAD và INC , vì AD//NC , ta có :\(\frac{IN}{ID}=\frac{IC}{AI}\)(2)
Từ (1),(2); ta có : \(\frac{ID}{IM}=\frac{IN}{ID}\)\(\Rightarrow\)IM.IN=ID2.