K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

a+b+c=0 <=> c = -a-b

M = a3+b3+c(a2+b2)-abc

M = a3+b3+(-a-b)(a2+b2)-abc

M = a3+b3-a3-a2b-ab2-b3-abc

M = -a2b-ab2-abc

M = -ab(a+b+c)

M = -ab.0 = 0

2 tháng 10 2018

1)a)=>x2+y2+2xy-4(x2-y2-2xy)

=>x2+y2+2xy-4.x2+4y2+8xy

=>-3.x2+5y2+10xy

22 tháng 4 2022

ké ý (b) ạ!!!

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

17 tháng 1 2016

A = (-a - b + c) - (-a - b - c)

= -a - b + c + a + b + c

= (a - a) + (b - b) + (c + c)

= 0 + 0 + 2c

= 2c

17 tháng 1 2016

A = (-a - b + c ) - ( -a - b - c )

A = -a -b - c + a + b + c

A = (-a + a ) + (-b + b ) + (c + c)

A= 0 + 0 + 2c

A= 2c

Vay A= 2c

tik nha

12 tháng 11 2017

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

NV
23 tháng 3 2022

1. Ta sẽ chứng minh dựa trên các kết quả quen thuộc sau về tâm I của đường tròn nội tiếp tam giác:

\(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)

Và: \(a.IA^2+b.IB^2+c.IC^2=abc\)

Đẳng thức thứ nhất chỉ cần dựng hình bình hành AMIN, sau đó sử dụng định lý phân giác các góc B và C.

Đẳng thức thứ hai ta chỉ cần lấy 1 điểm P nào đó đối xứng I qua AC, gọi D, E, F là tiếp điểm của (I) với BC, AC, AB, sau đó sử dụng tỉ lệ diện tích: 

\(\dfrac{S_{AEIF}}{S_{ABC}}=\dfrac{S_{AIK}}{S_{ABC}}=\dfrac{AI.AK}{AB.AC}=\dfrac{IA^2}{bc}\)

Tương tự và cộng lại ...

Từ đó:

\(a.MA^2+b.MB^2+c.MC^2=a.\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+b\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+c.\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)

\(=\left(a+b+c\right)MI^2+a.IA^2+b.IB^2+c.IC^2+2\overrightarrow{MI}\left(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\)

\(=\left(a+b+c\right)MI^2+abc\ge abc\)

Dấu "=" xảy ra khi \(MI=0\) hay M là tâm đường tròn nội tiếp

NV
23 tháng 3 2022

2. Do a;b;c là độ dài 3 cạnh của tam giác, thực hiện phép thế Ravi:

Đặt \(\left(a;b;c\right)=\left(x+y;y+z;z+x\right)\)

BĐT cần chứng minh tương đương:

\(4\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\ge3\left(x^3+y^3+z^3+3xyz+xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

Đây là BĐT Schur bậc 3