1. Tính giá trị của biểu thức: C = 2x5-5y3+2017 tại x, y thỏa mãn :
I x-1 I +(y+20)20 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Rightarrow\left|x-1\right|=0\) và \(\left(y+2\right)^{20}=0\)
+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\Rightarrow C=2x^5-5y^3+2015\)
\(=2.1^5-5.\left(-2\right)^3+2015\)
\(=2-\left(-40\right)+2015\)
\(=2057\)
Vậy C = 2057
Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)
Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )
\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được :
\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)
\(\left(y+2\right)^{30}\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)
Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)
\(\Rightarrow x-1=y+2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức A ta được:
\(A=2.1^5-5.\left(-2\right)^3+4=-76\)
Vậy A = -76 tại x = 1 và y = -2.
Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)
Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
Ta có: \(\left|x-1\right|+\left(y+20\right)^{20}=0\)
\(\Rightarrow\left\{\begin{matrix}\left|x-1\right|=0\\\left(y+20\right)^{20}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-1=0\\y+20=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\y=-20\end{matrix}\right.\)
Thay x, y vào C ta có:
\(C=2.1^5-5.\left(-20\right)^3+2017\)
\(=2+40000+2017\)
\(=42019\)
Vậy C = 42019
Làm thiếu rồi bước đầu cần phải chứng minh | x - 1| > 0 và (y + 20)^20 > 0
=> | x - 1| + (y + 20)^20 > 0
Rồi mới làm tiếp như rứa