K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

|x-8|+2016

Có |x-8|》0

=>|x-8|+2016》2016

Dấu ''='' xảy ra khi

|x-8|=0

+) x-8=0

X = 8

Vậy giá trị nhỏ nhất của |x-8|+2016 là 2016 khi x=8

22 tháng 1 2017

Đặt \(A=\left|x-8\right|+2016\)

Ta có : \(\left|x-8\right|\ge0\)

\(\Rightarrow\left|x-8\right|+2016\ge2016\)

\(\Rightarrow A\ge2016\)

Dấu " = " xảy ra <=> x - 8 = 0 <=> x = 8

Vậy MinA = 2016 khi x = 8

6 tháng 2 2017

vì /3x-262016/ luôn luôn lớn hơn hoặc bằng 0 ( với mọi x )

=> /3x-2^2016/-8 lớn hoặc bằng -8

=>Min A =8 khi x+(-8)=0

                       x=0-(-8)

                       x=8

vậy Min A =-8 khi x =8

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

1 tháng 10 2016

a, B = |x-5| +|2-x|

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-5\right)\left(2-x\right)\ge0\)\(\Rightarrow2\le x\le5\)

\(\Leftrightarrow\begin{cases}\left(x-5\right)\left(2-x\right)=0\\2\le x\le5\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\x=2\end{cases}\)

Vậy MinB=3 khi \(\begin{cases}x=5\\x=2\end{cases}\)

b)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|y+8\right|+\left|2-y\right|\ge\left|y+8+2-y\right|=10\)

\(\Rightarrow C\ge10\)

Dấu = khi \(\left(y+8\right)\left(y-2\right)\ge0\)\(\Rightarrow-8\le x\le2\)

\(\Leftrightarrow\begin{cases}\left(y+8\right)\left(y-2\right)=0\\-8\le x\le2\end{cases}\)\(\Leftrightarrow\begin{cases}y=-8\\y=2\end{cases}\)

Vậy MinC=10 khi \(\begin{cases}y=-8\\y=2\end{cases}\)

c)Ta có:

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(\ge x-2015+0+2017-x=2\)

\(\Rightarrow P\ge2\)

Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)

Vậy MinP=2 khi x=2016

 

 

 

 

 

 

 

 

 

8 tháng 9 2016

A=I x - 2016 I + I x - 1 I + 1

     Vì |x-2016|\(\ge\)0

          |x-1|\(\ge\)0

              Suy ra:I x - 2016 I + I x - 1 I + 1\(\ge\)1

   Dấu = xảy ra khi x-2016=0;x=2016

                              x-1=0;x=1

Vậy Min A=1 khi x=2016;x=1

8 tháng 9 2016

cách lm thông minh v

14 tháng 7 2015

De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7

De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546

18 tháng 12 2017

Với \(k\in R\)ta có:

\(P+k=\frac{\left(kx^2-8x+k+6\right)}{\left(x^2+1\right)}\)

Với k = -8 thì:

\(P-8=\frac{\left[-2.\left(2x+1\right)^2\right]}{\left(x^2+1\right)}\le0\)

\(\Rightarrow P\le8\)

\(\Rightarrow Max_P=8\)khi \(x=-\frac{1}{2}\)

\(P+2=\frac{\left[2.\left(x-2\right)^2\right]}{x^2+1}\ge0\)

\(\Rightarrow P\ge2\)

\(\Rightarrow Min_A=-2\)khi \(x=2\)

18 tháng 12 2017

\(P=\frac{6x-8}{x^2+1}\)

\(\Leftrightarrow Px^2+P=6x-8\)

\(\Leftrightarrow Px^2+P-6x+8=0\)

\(\Leftrightarrow Px^2-6x+\left(P+8\right)=0\)(1)

Để PT (1) có nghiệm \(\Leftrightarrow\left(-6\right)^2-4P\left(P+8\right)\ge0\Leftrightarrow36-4P^2-32P\ge0\)

\(\Leftrightarrow9-P^2-8P\ge0\Leftrightarrow\left(-P-9\right)\left(P-1\right)\ge0\Leftrightarrow-9\le P\le1\)

Vậy P có giá trị nhỏ nhất là - 9 \(\Leftrightarrow-9x^2-6x-1=0\Rightarrow x=-\frac{1}{3}\)\

Vậy P có giá trị lớn nhất là 1 \(x^2-6x+9=0\Rightarrow x=3\)