Cho x>0.Chứng minh \(x+\frac{1}{x}\ge2\)
Áp dụng chứng minh :Nếu abcd=1 và a;b;c;d > 0 thì a2+b2+c2+d2+ab+ac+ad+bc+bd+cd \(\ge\) 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
*Chứng minh bất đẳng thức
Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) (đpcm)
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Vì 1 số bất kì nhân với 0 thì đều bằng 0
nên \(x\times y=0\Rightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
\(\left(2a-3\right)\times\left(\frac{3}{4}a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2a-3=0\\\frac{3}{4}a+1=0\end{cases}\Rightarrow\orbr{\begin{cases}a=1,5\\a=-\frac{4}{3}\end{cases}}}\)
\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2a=3\\\frac{3}{4}a=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)
\(\left(2a-3\right)\left(\frac{3}{4}a+1\right)=0\)
<=> \(\left[\begin{array}{nghiempt}2a-3=0\\\frac{3}{4}a+1=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}a=\frac{3}{2}\\a=-\frac{4}{3}\end{array}\right.\)
a) Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{x^2+1}{x}\ge2\Leftrightarrow x+\frac{1}{x}\ge2\)(vì x > 0)
b) \(\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge-2x\Leftrightarrow\frac{x^2+1}{x}\le-2\Leftrightarrow x+\frac{1}{x}\le-2\)(vì x < 0)
a) Ta có: \(x+\frac{1}{x}-2=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)
Vì \(x>0,\left(x-1\right)^2\ge0\)nên \(x++\frac{1}{x}-2\ge0\)
Vậy \(x+\frac{1}{x}\ge2\)vs \(x>0\)
b) Ta có: \(x+\frac{1}{x}+2=\frac{x^2+2x+1}{x}=\frac{\left(x+1\right)^2}{x}\)
Vì \(x< 0,\left(x+1\right)^2\le0\), nên \(x+\frac{1}{x}\le0\)
Vậy \(x+\frac{1}{x}\le-2\)vs \(x< 0\)
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)
Dấu "=" xảy ra khi \(x=1\)
Bài 2:
Áp dụng BĐT AM-GM ta có:
\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)
\(ab+cd\ge2\sqrt{abcd}=2\) (2)
\(ac+bd\ge2\sqrt{acbd}=2\) (3)
\(ad+bc\ge2\sqrt{adbc}=2\) (4)
Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh
Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)
1) \(x+\frac{1}{x}\ge2\left(1\right)\)
<=> \(\frac{x^2+1}{x}\ge2\)
<=> x2 + 1 \(\ge\)2x
<=> x2 + 1 - 2x \(\ge\) 0
<=> (x - 1)2 \(\ge\)0 (2)
Bđt (2) đúng vậy bđt (1) được chứng minh
b) Áp dụng bđt AM-GM cho 10 số dương ta có:
a2+b2+c2+d2+ab+ac+ad+bc+bd+cd
\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)
\(=10\sqrt[10]{1}=10\left(đpcm\right)\)