Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
Ta có: \(x+\left(y+1\right)\ge2.\sqrt{x.\left(y+1\right)}=2.\sqrt{xy+x}\)
\(y+\left(x+1\right)\ge2.\sqrt{y.\left(x+1\right)}=2.\sqrt{xy+y}\)
\(1+\left(x+y\right)\ge2.\sqrt{x+y}\)
Ta có: \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y}{x+1}}+\sqrt{\frac{1}{x+y}}\)
\(=\frac{\sqrt{x}}{\sqrt{y+1}}+\frac{\sqrt{y}}{\sqrt{x+1}}+\frac{1}{\sqrt{x+y}}\)
\(=\frac{x}{\sqrt{yx+x}}+\frac{y}{\sqrt{xy+y}}+\frac{1}{\sqrt{x+y}}\)
\(=\frac{2x}{2\sqrt{yx+x}}+\frac{2y}{2\sqrt{xy+y}}+\frac{2}{2\sqrt{x+y}}\)
\(\ge\frac{2x}{x+y+1}+\frac{2y}{x+y+1}+\frac{21}{x+y+1}=\frac{2\left(x+y+1\right)}{x+y+1}=2\)
đpcm
Tham khảo nhé~
Ta có : \(x>y\Rightarrow x-y>0\)
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cô - si ta được :
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}\)
\(\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Chúc bạn học tốt !!!
\(x>y\),\(xy=1\)
Ta có:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cauchy ta có:
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
\(\Rightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)(đpcm)
Chúc bạn học tốt
Có: \(x>y\Rightarrow x-y>0\)
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cô-si ta được:
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}\\ \Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Vì : \(x>y\Rightarrow x-y>0\)
Lại có :\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\Rightarrow x^2+y^2\ge2\sqrt{2}\left(x-y\right)\Rightarrow x^2+y^2\ge2\sqrt{2}x+2\sqrt{2}y\)
\(\Rightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)
\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y+\left(\sqrt{2}\right)^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y-\sqrt{2}\right)^2\ge0\)
=> BĐT đã cho luôn đúng
Dấu '' = '' xảy ra khi : \(\left\{{}\begin{matrix}x-y-\sqrt{2}=0\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\sqrt{2}\\x\left(-y\right)=-1\end{matrix}\right.\)
=> x = -y là nghiệm của phương trình