K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2019

Có: \(x>y\Rightarrow x-y>0\)

\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)

Áp dụng BĐT Cô-si ta được:

\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}\\ \Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

Vì : \(x>y\Rightarrow x-y>0\)

Lại có :\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\Rightarrow x^2+y^2\ge2\sqrt{2}\left(x-y\right)\Rightarrow x^2+y^2\ge2\sqrt{2}x+2\sqrt{2}y\)

\(\Rightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)

\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y+\left(\sqrt{2}\right)^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y-\sqrt{2}\right)^2\ge0\)

=> BĐT đã cho luôn đúng

Dấu '' = '' xảy ra khi : \(\left\{{}\begin{matrix}x-y-\sqrt{2}=0\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\sqrt{2}\\x\left(-y\right)=-1\end{matrix}\right.\)

=> x = -y là nghiệm của phương trình