(-9989) - (2008-9989) + (-192)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện các phép tính sau:
a. (-9989)-(2008-9989)+(-192)
b. 44.179+202-79.44
c. 3.42:|500-(7.35+125)|
Hình thang và hình chữ nhật có nhiều nét giống nhau, tuy nhiên cách tính diện tích hình chữ nhật và diện tích hình thang lại khác nhau. Từ bài viết hướng dẫn cách tính diện tích hình chữ nhật trước đó, hôm nay Taimienphi sẽ chia sẻ với bạn đọc cách tính diện tích hình thang: vuông, cân, khi biết độ dài 4 cạnh, công thức tính. Hãy cùng theo dõi và chia sẻ nếu như bạn hay ai đó đang cần nhé.
Hơi nhầm nè , để tôi sửa lại đề \(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\)
\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(A=1+1+1+...+1-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-....-\frac{1}{9900}\)
\(A=98-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\right)\)
\(A=98-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(A=98-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=98-\left(\frac{1}{2}-\frac{1}{100}\right)=98-\frac{49}{100}=\frac{9751}{100}\)
Vậy.............
\(A=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9989}{9900}\)
\(A=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)
có 50 số 1
\(A=50-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
Đặt B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Thay B vào A ta được:
\(A=50-\frac{49}{100}=\frac{5000}{100}-\frac{49}{100}=\frac{4951}{100}\)
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
\(\left(-9989\right)-\left(2008-9989\right)+\left(-192\right)\)
\(=\left(-9989\right)-2008+9989+\left(-192\right)\)
\(=\left[\left(-9989\right)+9989\right]-2008+\left(-192\right)\)
\(=0-2008+\left(-192\right)\)
\(=\left(-2008\right)+\left(-192\right)\)
\(=-2200\)