Cho hình thang ABCD . Một đường thẳng d song song với hai cạnh đáy cắt hai canh bên AD,BD theo thứ tự là M,N và cắt hai đường chéo BD,AC tại H,K.Hãy nêu cách dựng đường thẳng d để MH=NK=HK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hình thang ABCD(AB//CD) có
M∈AD(Gt)
N∈BC(gt)
MN//AB//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{BN}{BC}\)(Định lí Ta lét)(1)
Xét ΔADC có
M∈AD(Gt)
K∈AC(Gt)
MK//DC(gt)
Do đó: \(\dfrac{AM}{AD}=\dfrac{MK}{DC}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔBDC có
H∈BD(Gt)
N∈BC(Gt)
HN//DC(gt)
Do đó: \(\dfrac{BN}{BC}=\dfrac{HN}{DC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{DC}=\dfrac{HN}{DC}\)
⇔MK=HN
⇔MK+KH=HN+KH
⇔MH=NK(đpcm)
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.