Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DN/BD=DM/DA
CP/CA=CQ/CB
mà DM/DA=CQ/CB
nên DN/BD=CP/CA
b: Xét ΔDAB có MN//AB
nên MN/AB=DM/DA
Xet ΔCAB có PQ//AB
nên PQ/AB=CQ/CP
mà DM/DA=CQ/CP
nên MN=PQ
Trong ΔADB, ta có: MN // AB (gt)
Suy ra: hệ quả định lí ta-lét) (1)
Trong ΔACB, ta có: PQ // AB (gt)
Suy ra: Hệ quá định lí Ta-lét) (2)
Lại có: NQ // AB (gt)
AB // CD (gt)
Suy ra: NQ // CD
Trong ΔBDC, ta có: NQ // CD (chứng minh trên)
Suy ra: (Định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra hay MN = PQ.
Trong ΔADB, ta có: MN // AB (gt)
Suy ra: hệ quả định lí ta-lét) (1)
Trong ΔACB, ta có: PQ // AB (gt)
Suy ra: Hệ quá định lí Ta-lét) (2)
Lại có: NQ // AB (gt)
AB // CD (gt)
Suy ra: NQ // CD
Trong ΔBDC, ta có: NQ // CD (chứng minh trên)
Suy ra: (Định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra hay MN = PQ.
Xét Tam giác ADB: MN // AB (gt)
Suy ra: DN/DB = MN/AB (Hệ quả định lí Talét) (1)
Xét Tam giác ACB: PQ // AB (gt)
Suy ra: CQ/CB = PQ/AB (Hệ quá định lí Talét) (2)
Ta có: NQ sog sog AB (gt)
AB sog sog CD (gt)
Suy ra: NQ sog sog CD (cùng sog sog AB)
Xét Tam giác BDC: NQ sog sog CD (cmt)
Suy ra: DN/DB = CQ/CB (Định lí Talét) (3)
Từ (1), (2) và (3) suy ra: MN/AB = PQ/AB
Suy ra: MN = PQ (đpcm).
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON
Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.
Gọi X là giao điểm của MQ và NP.
Ta có các tam giác đồng dạng sau:
MQX và NPX (do MQ song song với NP, XM song song với PN và góc MXQ và PXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQ và NP).XMD và XCB (do MQ song song với CB và MD song song với BX).XNC và XAD (do NP song song với AD và NC song song với XA).
Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:
(1)PNMQ=PXQX(1)(2)CBMD=XBXM(2)(3)ADNC=AXNX(3)
Như vậy, từ các phương trình trên, ta có thể suy ra:
(4)PNMQ=CBMD⋅ADNC(4)
Vậy nên ta thấy rằng PNMQ=CBMD⋅ADNC.
Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.
Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.
mong là đúng:))
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
\(\dfrac{DN}{BD}=\dfrac{CQ}{BC}=\dfrac{CP}{AC}\)