biết hệ số của x2 trong khai triển của (1-3x)n là 90.
Tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Số hạng tổng quát của khai triển (1 – 3x)n là:
+ Số hạng chứa x2 ứng với k = 2.
Hệ số của x2 là 90 nên ta có:
Vậy n = 5.
Với số thực x ≠ 0 và với mọi số tự nhiên n ≥ 1, ta có: (1 - 3x)n = [1 - (3x)]n = Ckn (1)n – k (-3)k . xk. Suy ra hệ số của x2trong khai triển này là 32C2n .Theo giả thiết, ta có: 32C2n = 90 => C2n = 10. Từ đó ta có: = 10 ⇔ n(n - 1) = 20. ⇔ n2 – n – 20 = 0 ⇔ n = -4 (loại) hoặc n = 5. ĐS: n = 5. |
Số hạng thứ \(k+1\) của khai triển là :
\(t_{k+1}=C^k_n\left(3x\right)^k\)
Vậy số hạng chứa \(x^2\) là \(t_3=C^2_n9.x^2\)
Theo đề bài ta có :
\(9.C^2_n=90\Leftrightarrow C^2_n=10\Leftrightarrow n=5\)
Đáp án A
Vậy n = 10.
Ta có số hạng tổng quát trong khai triển trên là
Vì a là hệ số của số hạng không chứa x trong khai triển nên ta cho
ta có : \(\left(1-3x\right)^n=\sum\limits^n_{k=0}C^k_n\left(1\right)^{n-k}\left(-3\right)^k\left(x^k\right)\)
để có \(x^2\) trong khai triển thì \(k=2\)
khi đó hệ số của số hạng chứa \(x^2\) là \(\)\(C^2_n\left(-3\right)^2=90\)
\(\Leftrightarrow C^2_n=10\Leftrightarrow\dfrac{n!}{2!\left(n-2\right)!}=10\) \(\Leftrightarrow\dfrac{n\left(n-1\right)}{2}=10\)
\(\Leftrightarrow n^2-n-20=0\left[{}\begin{matrix}n=5\left(N\right)\\n=-4\left(L\right)\end{matrix}\right.\) vậy \(n=5\)