K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

ĐK: \(x\notin\left\{-\frac{1}{2008};-\frac{2}{2009};-\frac{4}{2010};-\frac{5}{2011}\right\}\)

Với ĐK trên , pt đã cho tương đương với :

\(\frac{1}{2008x+1}+\frac{1}{2011x+5}=\frac{1}{2009x+2}+\frac{1}{2010x+4}\)

\(\Leftrightarrow\frac{4019x+6}{\left(2008x+1\right)\left(2011x+5\right)}=\frac{4019x+6}{\left(2009x+2\right)\left(2010x+4\right)}\)

\(\Leftrightarrow4019x+6=0\)

Hoặc : \(\frac{1}{\left(2008x+1\right)\left(2011x+5\right)}=\frac{1}{\left(2009x+2\right)\left(2010x+4\right)}\)

\(\Leftrightarrow4019x+6=0\) hoặc\(\left(2008x+1\right)\left(2011x+5\right)-\left(2009x+2\right)\left(2010x+4\right)=0\)

\(\Leftrightarrow4019x+6=0\) hoặc \(2x^2+5x+3=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{6}{4019}\\x=-1\\x=-\frac{3}{2}\end{array}\right.\)

Vậy pt trên có 3 nghiệm : \(x=-\frac{6}{4019};x=-1;x=-\frac{3}{2}\).

 

4 tháng 11 2016

Sai roài

NV
28 tháng 11 2019

Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)

\(f\left(1\right)=1+2-3-4+...-2011-2012\)

\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)

\(=-2012\)

Vậy số dư là \(-2012\)

17 tháng 2 2020

Vì số đư của phép chia F(x) cho nhị thức g(x)=x-1 chính bằng F(1) (theo định lý bezout) ,nên số dư của phép chia là

F(1)= 1+2-3-4+5+6-....-2012

=-2012

Vậy số dư của phép chia f(x) cho nhị thức g(x)=x-1 là -2012

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-1+\dfrac{1}{2010}=-1\)

8 tháng 6 2015

x4+2011x2+2010x+2011

=(x4+x3+x2)+(2011x2+2011x+2011)-(x3+x2+x)

=x2(x2+x+1)+2011(x2+x+1)-x(x2+x+1)

=(x2+x+1)(x2+2011-x)

8 tháng 6 2015

x4+2011x2+2010x+2011=x4-x+2011x2+2011x+2011

                                    =x(x3-1)+2011(x2+x+1)

                                    =x(x- 1)(x2+x+1)+2011(x2+x+1)

                                   =(x2+x+1)[x(x-1)+2011]

                                    =(x2+x+1)(x2-x+2011)

22 tháng 10 2016

Đặt \(\sqrt{2x-1}=a\ge0\)

Ta có \(2011x^2-a^2=2010xa\)

\(\Leftrightarrow\left(2010x^2-2010xa\right)+\left(x^2-a^2\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(2010x+x+a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=a\\2011x=-a\left(loai\right)\end{cases}}\)

\(\Leftrightarrow x=1\)

11 tháng 12 2018

minh dang can gap

11 tháng 12 2018

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

Đặt: x2+5x+4=t

Ta có:

\(t\left(t+2\right)-120=t^2+2t-120=t^2+12t-10t-120=t\left(t+12\right)-10\left(t+12\right)\)

\(=\left(t+12\right)\left(t-10\right)=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)