K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-1+\dfrac{1}{2010}=-1\)

Thay 2010 = x + 1 vào P ( x ),ta có :

\(^{x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1}\)

= x10 - x10 - x9 + x9 + x8 - x8 - x7 + ... + x3 + x2 - x2 + x - 1

= x + 1

= 2009 + 1

= 2010
 

17 tháng 5 2017

Thay 2010 = x+ 1 vào P( x) ,có :

\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1\)

\(x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2+x-1\) 

= x+1 

= 2009 + 1

= 2010

x=2010 nên x-1=2009

\(M=x^{2010}-x^{2009}\left(x-1\right)-...-x^2\left(x-1\right)-x\left(x-1\right)-1\)

\(=x^{2010}-x^{2010}+x^{2009}-x^{2009}+...-x^3+x^2-x^2+x-1\)

=x-1

=2009

27 tháng 4 2016

a) x+2x+3x+4x+...+2011x = 2012.2013

\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156

\(\Rightarrow\) x.2023066 = 4050156

\(\Rightarrow\) x = 4026/2011

1 tháng 5 2016

Câu a ko nhất thiết phải tính ra số lớn như thế đâu

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)