K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

Vì a  ≥  0 nên a xác định, b  ≥ 0 nên  b  xác định

Ta có: a - b 2   ≥  0 ⇒ a - 2 a b  + b  ≥  0 ⇒ a + b  ≥  2 a b

⇒ a + b + a + b  ≥  a + b + 2 a b

⇒ 2(a + b)  ≥   a 2  + 2 a b  +  b 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

NV
16 tháng 11 2021

\(\Leftrightarrow\dfrac{a^4+b^4+4a^2b^2}{a^2b^2}\ge\dfrac{3\left(a^2+b^2\right)}{ab}\)

\(\Leftrightarrow a^4+b^4+4a^2b^2\ge3ab\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a^4+b^4-2a^2b^2\right)+6a^2b^2-3ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2-3ab\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)^2-3ab\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a-\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\right]\ge0\) (luôn đúng)

a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: Bạn ghi lại đề đi bạn

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)

\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)

18 tháng 2 2022

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)

\(=a^2d^2+b^2c^2-2abcd\)

\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)

\(=\left(ad-bc\right)^2\ge0\)

\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

17 tháng 7 2021

VP `=(a+b)(a^2-ab+b^2)`

`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`

`=a^3+b^3`

.

VP `=(a-b)(a^2+ab+b^2)`

`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`

`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`

`=a^3-b^3`

17 tháng 7 2021

đúng rồi mà

3 tháng 8 2021

undefined

hok

tốt 

nha

11 tháng 2 2022

a) Ta có (ac+bd)2+(adbc)2=a2c2+2acbd+b2d2+a2d22adbc+b2c2

=(a2c2+b2c2)+(a2d2+b2d2)=c2(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

b) Ta có 0(adbc)2(ac+bd)2(ac+bd)2+(adbc)2

Mà theo câu a, ta có (ac+bd)2+(adbc)2=(a2+b2)(c2+d2)

Nên (ac+bd)2(a2+b2)(c2+d2)

23 tháng 8 2023

dasdfghjkl

 

24 tháng 6 2021

45ubyu

DT
12 tháng 6 2023

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

22 tháng 7 2023

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1