K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
12 tháng 6 2023

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

22 tháng 7 2023

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1

22 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)

\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)

Khi \(a=b=c=1\)

25 tháng 4 2018

Lời giải với kiến thức lớp 8:

\(a^{2017}+b^{2017}\le a^{2018}+b^{2018}\)

\(\Leftrightarrow a^{2017}\left(a-1\right)+b^{2017}\left(b-1\right)\ge0\)

\(\Leftrightarrow a^{2017}\left(a-\frac{a+b}{2}\right)+b^{2017}\left(b-\frac{a+b}{2}\right)\ge0\)

\(\Leftrightarrow a^{2017}\cdot\frac{a-b}{2}+b^{2017}\cdot\frac{b-a}{2}\ge0\)

\(\Leftrightarrow\left(a^{2017}-b^{2017}\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^{2016}+a^{2015}b+a^{2014}b^2+...+b^{2016}\right)\ge0\)

Bất đẳng thức cuối đúng với mọi a, b. Do đó bất đẳng thức đã cho là đúng.

1 tháng 6 2020

1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)

2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3

15 tháng 5 2017

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

15 tháng 5 2017

từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.

áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).

nên a2/a4 + bc <=1/2v(bc).

do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).

ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.

thật vậy.

giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).

áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.

ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.

nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)

lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.

hay VP <= 1 (2).

từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay

(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3

tức N <= 3 (đpcm).

(mình chưa biết đánh nên cố đọc nhé!)

26 tháng 5 2020

Đặt \(a=\frac{x^2}{z},\text{ }b=\frac{y^2}{z}\) thì \(z=\sqrt{x^4+y^4}\) và x, y, z > 0

Ta cần chứng minh: \(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)

Tương đương: \(\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge\left(\frac{x}{y}-\frac{y}{x}\right)^2+2\sqrt{2}\)

Sau cùng ta cần chứng minh: \(\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\)

Xong.

26 tháng 5 2020

Nhân tiện, với cùng điều kiện như trên thì bất đẳng thức sau đây đúng với mọi \(k\le1\):  

\(\frac{1}{a}+\frac{1}{b}\ge k\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+2\sqrt{2}\)

+) k = 1 đã được chứng minh.

+) k = 0 quá quen thuộc.

+) k < 0 thì yếu hơn k = 0.