Cho m = 334
a) Tìm tất cả các ước nguyên dương của n. Tính tổng các ước đó
b) Tìm số dư của phép chia 335 - 1 cho 13 (không dừng đồng dư thức)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?
1, có 1 ước là 7
2, số 27
3, 14
4, ước nguyên dương( 18)= {1;2;3;6;9;18}
tick nha
1)Các Ước của số 49 là : 1; 7; 49
Vì 1 và 49 không phải số nguyên tố
Nên các ước nguyên tố của 49 là :1
2)Đáp án : 27
3) Đáp án : 14
Ước nguyên dương của 18 là : 1; 2; 3; 6; 9; 18
Tham khảo :
a) Lần lượt chia 20 cho các số tự nhiên từ 1 đến 20, ta thấy 20 chia hết cho 1; 2; 4; 5; 10; 20 nên
Ư(20) = {1; 2; 4; 5; 10; 20}.
b) Lần lượt nhân 4 với 0; 1; 2; 3; 4; 5; … ta được các bội của 4 là: 0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48; 52;…
Các bội của 4 nhỏ hơn 50 là: B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48}
a: =>(x-1)^2=1 và 5y^2=5
=>(x-1)^2=1 và y^2=1
=>\(y\in\left\{1;-1\right\};x\in\left\{2;0\right\}\)
b: Gọi số cần tìm là x
x chia 11 dư 4 nên x-4 chia hết cho 11
=>x+18 chia hết cho 11
x chia 13 dư 8
=>x-8 chia hết cho 13
=>x+18 chia hết cho 13
=>x+18 chia hết cho 143
=>x chia 143 dư 18
a)
Vì 3 là số nguyên tố
=> Các ước của m là
\(1;3;3^2;3^3;....;3^{34}\)
Tổng các ước của m là
\(S=1+3+3^2+....+3^{34}\)
\(\Rightarrow3S=3+3^2+3^3+....+3^{35}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+....+3^{35}\right)-\left(1+3+3^2+....+3^{34}\right)\)
\(\Rightarrow2S=3^{35}-1\)
\(\Rightarrow S=\frac{3^{35}-1}{2}\)
Câu a thì dễ r` c` câu b