Chứng minh tổng bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2
Vậy tổng là:
a2 + (a+1)2+ (a+2)2 + (a+3)2 + (a+4)2= 5a2+1+4+9+16=5a2+30
Gọi 5 số tự nhiên liên tiếp là n-2;n-1;n;n+1;n+2
Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2
=5n^2+10=5(n^2+2)
n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5
=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3)
Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn
Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)
Ta có
\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)
Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)
Mặt khác , \(t^2\equiv0\left(mod4\right)\)
=> Vô lý
Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương
#)Giải :
Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n, n +1, n + 2 (n ∈ N, n > 2).
Ta có: (n - 2)2 + (n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5(n2 + 2)
Vì n2 không thể tận cùng là 3 hoặc 8, do đó n2 + 2 không thể chia hết cho 5.
=> 5(n2 + 2) không là số chính phương, cũng có nghĩa là tổng của 5 số tự nhiên liên tiếp không thể là số chính phương.
gọi 5 số liên tiếp là a;a+1;a+2;a+3;a+4
Ta có: ...... (Bạn tự làm tiếp nha)
Gọi 5 số tự nhiên liên tiếp đó là n-2,n-1,n,n+1,n+2 ( n thuộc N ; n>1 )
Ta có : A=(n-2)2 +(n-1)2 + n2 + (n+1)2 + ( n+2)2 = 5.(n2 +2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 +2 không thể chia hết cho 5
=>5.(n2 +2) không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không thể là một số chính phương
Bạn vào Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath