1. Tìm tất cả các số tự nhiên n sao cho:
e) (22 : 4 ) . 2n = 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.16 ≥ 2n > 4 ⇒ 2. 24 ≥ 2n > 22
⇒ 25 ≥ 2n > 22
⇒ 5 ≥ n > 2
⇒ n ∈ {3; 4; 5}
Câu 17
Để n - 1 là ước của 3n + 6 thì (3n + 6) ⋮ (n - 1)
Ta có:
3n + 6 = 3n - 3 + 9 = 3(n - 1) + 9
Để (3n + 6) ⋮ (n - 1) thì 9 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(9) = {-9; -3; -1; 1; 3; 9}
⇒ n ∈ {-8; -2; 0; 2; 4; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 4; 10}
Câu 22
A = 3 + 3² + 3³ + ... + 3²⁰²⁵
⇒ 3A = 3² + 3³ + 3⁴ + ... + 3²⁰²⁶
⇒ 2A = 3A - A
= (3² + 3³ + 3⁴ + ... + 3²⁰²⁶) - (3 + 3² + 3³ + ... + 3²⁰²⁵)
= 3²⁰²⁶ - 3
⇒ 2A + 3 = 3²⁰²⁶ - 3 + 3
⇒ 2A + 3 = 3²⁰²⁶
Mà 2A + 3 = 3ⁿ
⇒ 3ⁿ = 3²⁰²⁶
⇒ n = 2026
a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Để n + 6 ⋮ n + 1 thì :
⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1
Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)
⇒ Ư(5)={ 1;5 }
n + 1 = 1 ⇒ n = 0
n + 1 = 5 ⇒ n = 4
Vậy .............
⋮⋮⋮1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
a, Ta có : 8 ⋮ n + 1
=> n + 1∈ Ư(8) ∈ {1;2;4;8} ( Vì đề bạn là số tự nhiên nha)
=> n ∈ {0;1;3;7}
b, 10n + 14 ⋮ 2n + 2
=> (10n + 10) + 4 ⋮ 2n + 2
=> 5(2n + 2) + 4 ⋮ 2n + 2
Vì 5(2n + 2) ⋮ 2n + 2 nên 4 ⋮ 2n + 2
=> 2n + 2 ∈ Ư(4) ∈ {1;2;4)
=> 2(n + 1) ∈ {1;2;4}
Mà 2(n + 1) luôn chẵn => 2(n + 1) = 2;4
=> n = 0;1
1. Tìm tất cả các số tự nhiên n sao cho:
e) (22 : 4 ) . 2n = 32
Bài giải
=> (4:4).2n=32
=> 1.2n=32
=> 2n=32
=> 2n=25
=> n=5
e) (22 : 4 ) . 2n = 32
=>(22:22)*2n=32
=>2n=32
=>2n=25
=>n=5