K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

1. Tìm tất cả các số tự nhiên n sao cho:

 

e) (22 : 4 ) . 2n = 32

                                     Bài giải

=> (4:4).2n=32

=> 1.2n=32

=> 2n=32

=> 2n=25

=> n=5

17 tháng 8 2016

e) (22 : 4 ) . 2n = 32

=>(22:22)*2n=32

=>2n=32

=>2n=25

=>n=5

11 tháng 7 2018

2.16 ≥ 2n > 4 ⇒ 2. 24 ≥ 2n > 22

⇒ 25 ≥ 2n > 22

⇒ 5 ≥ n > 2

⇒ n ∈ {3; 4; 5}

26 tháng 3 2018

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Đáp án B

Ta có: \(2\cdot32\ge2^n>8\)

\(\Leftrightarrow2^6\ge2^n>2^3\)

\(\Leftrightarrow n\in\left\{4;5;6\right\}\)

11 tháng 10 2021

a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)

Do \(n\in N\)

\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)

\(\Rightarrow n\in\left\{16;35\right\}\)

b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)

Do \(n\in N\)

\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)

\(\Rightarrow N\in\left\{32;69\right\}\)

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

13 tháng 12 2017

a) (x,y)=(0,17),(1,9)

k mk di

28 tháng 1 2020

a)               ta có : 12 = 6.2 = 2.6 = 12.1 = 1.12

=) 2x+1 = 6;2;12;1

=) x = 0

=) y - 5 = 2;6;1;12

=) y= 7;11;6;17

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40