Giải phương trình:
3 - x + 2√(x² - x + 1) = 4x( 1 - x + √(x² -x +1) )²
Minhd cảm ơn nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\sqrt{5x^2-2x+2}=x+1\)
\(\Leftrightarrow\left(\sqrt{5x^2-2x+2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5x^2-2x+2=x^2+2x+1\)
\(\Leftrightarrow5x^2-x^2-2x-2x=1-2\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(2,\sqrt{4x^2-x+1}-2x=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-x+1}\right)^2=\left(3+2x\right)^2\)
\(\Leftrightarrow4x^2-x+1=9+12x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-x-12x=9-1\)
\(\Leftrightarrow-13x=8\)
\(\Leftrightarrow x=-\dfrac{8}{13}\)
Vậy \(S=\left\{-\dfrac{8}{13}\right\}\)
1: =>x>=-1 và 5x^2-2x+2=x^2+2x+1
=>x>=-1 và 4x^2-4x+1=0
=>x=1/2
2: =>\(\sqrt{4x^2-x+1}=2x+3\)
=>x>=-3/2 và 4x^2-x+1=4x^2+12x+9
=>x>=-3/2 và -11x=8
=>x=-8/11(nhận)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
a: =>|2x-3|=4x+9
TH1: x>=3/2
=>4x+9=2x-3
=>2x=-12
=>x=-6(loại)
TH2: x<3/2
PT sẽ là 4x+9=3-2x
=>6x=-6
=>x=-1(nhận)
b: =>x^2+2x+1-|3x-5|-x-x^2-2x-4=0
=>-x-3-|3x-5|=0
=>x+3+|3x-5|=0
=>|3x-5|=-x-3
TH1: x>=5/3
Pt sẽ là 3x-5=-x-3
=>4x=2
=>x=1/2(loại)
TH2: x<5/3
Pt sẽ là 3x-5=x+3
=>2x=8
=>x=4(loại)
Giải nghiệm phương trình 1/x(x+3) + 1/(x+3)(x+6) + 1/(x+6)(x+12) = 1/16
Giúp mình với ạ. Cảm ơn nhiều
1) \(\sqrt{x^2-x}=x\)
\(\Leftrightarrow x^2+x=x^2\)
\(\Leftrightarrow x^2+x-x^2=0\)
\(\Leftrightarrow x=0\)
Vậy: \(x=0\)
2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))
\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)
\(\Leftrightarrow1-x^2=x^2-2x+1\)
\(\Leftrightarrow-x^2-x^2-2x=1-1\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;-1\right\}\)
1: =>x^2+x=x^2 và x>=0
=>x=0
2: =>1-x^2=x^2-2x+1 và x>=1
=>x^2-2x+1-1+x^2>=0 và x>=1
=>2x^2-2x=0 và x>=1
=>x=1