Tìm nghiệm của đa thức:
x2-4+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x) = 0 ⇔ 4 - 5x = 0 ⇔ x = \(\dfrac{4}{5}\)
Nghiệm của f(x) là \(\dfrac{4}{5}\)
b)Không có nghiệm vì Với mọi x ∈ R thì \(x^2\) ≥ 0 ⇔ \(x^2\) + 4 ≥ 4 > 0
Do đó \(x^2\) + 4 > 0 hay \(x^2\) + 4 ≠ 0
Vậy f(x) không có nghiệm
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
a) \(f\left(x\right)=x^2+7x-8=0\)
\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x-1=0\) hoặc \(x+8=0\)
Nếu \(x-1=0\Rightarrow x=1\)
Nếu \(x+8=0\Rightarrow x=-8\)
Vậy đa thức f(x) có nghiệm là 1 và -8
b) \(k\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)
\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)
Nếu \(x+1=0\Rightarrow x=-1\)
Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)
Vậy đa thức k(x) có nghiệm là -1 và -4/5
4(x+y)=11+xy <=> 4x+4y=11+xy
<=> xy-4y=4x-11 <=> y(x-4)=4x-11
=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)
Để y nguyên => x-4=(-5,-1,1,5)
x-4 | -5 | -1 | 1 | 5 |
x | -1 | 3 | 5 | 9 |
y | 3 | -1 | 9 | 5 |
Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)
b/ x3-2x-4=0
<=> x3-4x+2x-4=0
<=> x(x2-4)+2(x-2)=0
<=> x(x-2)(x+2)+2(x-2)=0
<=> (x-2)(x2+2x+2)=0
Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x
=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2
Đáp số: x=2
Ta có: \(2\left(x-4\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow2x-8-3x-3=4\)
\(\Leftrightarrow-x-11=4\)
hay x=-15
Đặt -4/3x^3+5x+4=0
=>-4x^3+15x+12=0
=>\(x\simeq2,25\)
f(x) = x2 - 4 + 4
f(x) = 0 <=> x2 - 4 + 4 = 0
x2 - 4 = -4
=> x2 = 0
=> x = 0
=> đa thức này có 1 nghiệm duy nhất là 0
ko chắc đâu
Đặt A(x)=0
=>5x2+9x+4=0
=>5x2+5x+4x+4=0
=>(x+1)(5x+4)=0
=>x=-1 hoặc x=-4/5
Ta có A(x) = \(5x^2+9x+4\)
= \(5x^2+5x+4x+4\)
= \(5x\left(x+1\right)\) + \(4\left(x+1\right)\)
= \(\left(x+1\right)\left(5x+4\right)\)
Ta có \(\left(x+1\right)\left(5x+4\right)\)= 0
=> \(\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\5x=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=\dfrac{-4}{5}\end{matrix}\right.\)
Vậy đa thức có nghiệm là -1 hoặc -4/5
Đề chính xác chưa
rồi