Tìm x sao cho biểu thức: \(\left(2x-3\right)\left(4+3x\right)\) đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$
$\geq |2x-4+8-2x|+|2x-6|$
$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix}
(2x-4)(8-2x)\geq 0\\
2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
Vì \(x\ge0\forall x\in R\)
=) \(x+\frac{3}{4}\ge\frac{3}{4}\forall x\in R\)
Dấu "=" xảy ra khi và chỉ khi : \(x+\frac{3}{4}=0\)
\(\Rightarrow x=-\frac{3}{4}\)
Vậy GTNN của \(A=\left|x+\frac{3}{4}\right|\) = 0 khi và chỉ khi \(x=-\frac{3}{4}\)
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Ta có: x2>=0(với mọi x)
=>2x-x2<=2x(với mọi x)
->(2x-x2)(x+2)(x+4)<=(2x)(x+2)(x+4)(với mọi x) hay A<=(2x)(x+2)(x+4)
Do đó, GTLN của A khi x =0 là (2x)(x+2)(x+4) hay 0(x+2)(x+4) hay 0
Vậy GTLN của A là 0 khi x=0
\(=8x+6x^2-12-9x\)
\(=6x^2-x-12=\left(-6\right)\left(-x^2+\frac{1}{6}x+2\right)\)
\(=\left(-6\right)\left[-x^2-2.\frac{1}{12}.\left(-x\right)+\left(\frac{1}{12}\right)^2-\left(\frac{1}{12}\right)^2+2\right]\)
\(=\left(-6\right)\left[\left(-x-\frac{1}{12}\right)^2+\frac{287}{144}\right]\)
\(=\left(-6\right)\left(-x-\frac{1}{12}\right)^2-\frac{287}{24}\ge-\frac{287}{24}\)
Vậy Min biểu thức = \(-\frac{287}{24}\) khi \(\left(-x-\frac{1}{12}\right)^2=0\Rightarrow-x-\frac{1}{12}=0\Rightarrow-x=\frac{1}{12}\Rightarrow x=-\frac{1}{12}\)