K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Ta có: x2>=0(với mọi x)

=>2x-x2<=2x(với mọi x)

->(2x-x2)(x+2)(x+4)<=(2x)(x+2)(x+4)(với mọi x) hay A<=(2x)(x+2)(x+4)

Do đó, GTLN của A  khi x =0 là (2x)(x+2)(x+4) hay 0(x+2)(x+4) hay 0

Vậy GTLN của A là 0 khi x=0

19 tháng 2 2016

\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)

Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)

Đặt t=|2x-4| ta được: t2=(2x-4)2

Suy ra: A=t2-4t+1986=t2-4t+4+1982

=(t-2)2+1982 \(\ge\)1982 (với mọi x)

Dấu "=" xảy ra khi: t=2

<=>|2x-4|=2

Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3

Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)

Vậy GTNN của A là 1982 tại x=3

 

20 tháng 9 2016

3 nhe

23 tháng 2 2016

\(\left(2x-5\right)^2<\left(2x-1\right)\left(2x+1\right)-\frac{5}{4}\Leftrightarrow4x^2-20x+25<4x^2-1-\frac{5}{4}\)

<=>-20x+25<-9/4

<=>-20x<-109/4

<=>x>109/80=1,3625

Vậy giá trị x cần tìm là: 2

25 tháng 2 2016

Ta có : x3+y3+z3=3xyz

<=>x3+y3+3x2y+3xy2+z3-3xyz-3x2y-3xy2=0

<=>(x+y)3+z3-3xy.(x+y+z)=0

<=>(x+y+z)[(x+y)2-(x+y).z+z2]-3xy.(x+y+z)=0

<=>(x+y+z).(x2+2xy+y2-xz-yz+z2-3xy)=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0(loại) hoặc x2+y2+z2-xy-yz-xz=0

*x2+y2+z2-xy-yz-xz=0

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z

Suy ra: \(P=\frac{xyz}{\left(x+x\right)\left(y+y\right)\left(z+z\right)}=\frac{xyz}{2x.2y.2z}=\frac{1}{8}\)

23 tháng 12 2016

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

24 tháng 2 2016

khó nghĩ mãi vẫn chưa ra

24 tháng 2 2016

A=(x^2-6x+1)/(x^2+x+1)

Ax^2+Ax+A=x^2-6X+1

x^2(A-1)+x(A+6)+A-1=0

delta=b^2-4ac=(A+6)^2-4(A-1)^2>=0

=>A^2+12A+36-4A^2+8A-4>=0

=>-3A^2+20A+32>=0

=>(8-A)(3A+4)>=0

=>-4/3<=A<=8

=> GTLN A=8

3 tháng 9 2018