K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

A A B D C H N M  

Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)

Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)

Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)

và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)

Suy ra :

\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)

                               \(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)

Suy ra điều phải chứng minh

7 tháng 6 2021

Trả lời:

A B C D M E H K I O

a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD

=> O là trung điểm của BD và AC

Xét tam giác ACE có:

O là trung điểm của AC 

M là trung điểm của AE ( gt )

=> OM là đường trung bình của tam giác ACE

=> OM // CE

hay BD // CE

=> ^BDC = ^ECK ( 2 góc đồng vị )   (1)

Vì O là trung điểm của BD và AC

=> OD = BD/2 và OC = AC/2

Mà BD = AC ( ABCD là hình chữ nhật )

=> OD = OC

=> tam giác DOC cân tại O

=> ^BDC = ^ACD (tc) (2)

Xét tứ giác HEKC có:

^EHC = 90o

^HCK = 90o

^EKC = 90o

=> tứ giác HEKC là hình chữ nhật ( dh1)

Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC 

=> I là trung điểm của CE và HK

=> IC = CE/2 và IK = HK/2

Mà CE = HK ( HEKC là hình chữ nhật )

=> IC = IK

=> tam giác ICK cân tại I

=> ^ECK = ^IKC (tc)  (3)

Từ (1) (2) và (3) => ^ACD = ^IKC 

Mà 2 góc này ở vị trí đồng vị 

nên AC // HK ( đpcm )

b, Xét tam giác ACE có:

I là trung điểm của CE 

M là trung điểm của AE (gt)

=> IM là đường trung bình của tam giác ACE

=> IM // AC

Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng

nên M, H, K thẳng hàng ( đpcm )

Trả lời:

ABCDMEHKIO

a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD

=> O là trung điểm của BD và AC

Xét tam giác ACE có:

O là trung điểm của AC 

M là trung điểm của AE ( gt )

=> OM là đường trung bình của tam giác ACE

=> OM // CE

hay BD // CE

=> ^BDC = ^ECK ( 2 góc đồng vị )   (1)

Vì O là trung điểm của BD và AC

=> OD = BD/2 và OC = AC/2

Mà BD = AC ( ABCD là hình chữ nhật )

=> OD = OC

=> tam giác DOC cân tại O

=> ^BDC = ^ACD (tc) (2)

Xét tứ giác HEKC có:

^EHC = 90o

^HCK = 90o

^EKC = 90o

=> tứ giác HEKC là hình chữ nhật ( dh1)

Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC 

=> I là trung điểm của CE và HK

=> IC = CE/2 và IK = HK/2

Mà CE = HK ( HEKC là hình chữ nhật )

=> IC = IK

=> tam giác ICK cân tại I

=> ^ECK = ^IKC (tc)  (3)

Từ (1) (2) và (3) => ^ACD = ^IKC 

Mà 2 góc này ở vị trí đồng vị 

nên AC // HK ( đpcm )

b, Xét tam giác ACE có:

I là trung điểm của CE 

M là trung điểm của AE (gt)

=> IM là đường trung bình của tam giác ACE

=> IM // AC

Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng

nên M, H, K thẳng hàng ( đpcm )

k nha đúng

14 tháng 7 2021

k nha đúng là gì?

NV
27 tháng 3 2019

A B C D M N H K

Kẻ MK//AB (\(K\in AH\)) \(\Rightarrow MK\perp AD\) , mà \(AH\perp DM\Rightarrow K\) là trực tâm tam giác \(AMD\Rightarrow DK\perp AM\)

Áp dụng Talet: \(\frac{HM}{BH}=\frac{MK}{AB}\)

\(\frac{BM}{MH}=\frac{CN}{ND}\Leftrightarrow\frac{BM}{MH}+1=\frac{CN}{ND}+1\Leftrightarrow\frac{BH}{MH}=\frac{CD}{ND}\Leftrightarrow\frac{MH}{BH}=\frac{ND}{CD}\)

\(\Rightarrow\frac{MK}{AB}=\frac{ND}{CD}\Rightarrow MK=ND\) (do AB=CD)

Mà KM//AB//CD \(\Rightarrow MKDN\) là hbh (tứ giác có cặp cạnh đối song song và bằng nhau)

\(\Rightarrow DK//MN\Rightarrow MN\perp AM\Rightarrow\widehat{AMN}=90^0\)

17 tháng 5 2017