K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

Với điều kiện x>0 ta có :

\(\Leftrightarrow\) \(\left(\log_2x-2\right)\left(\log_7x-1\right)=0\)

\(\Leftrightarrow\begin{cases}\log_2x-2=0\\\log_7x-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}\log_2x=2\\\log_7x=1\end{cases}\)

\(\Leftrightarrow\begin{cases}x=4\\x=7\end{cases}\)

Cùng thỏa mãn điều kiện x>0

Vậy phương trình có 2 nghiệm x=4; x=7

NV
13 tháng 1

a.

ĐKXĐ: \(x>0\)

\(log_5x>6\Rightarrow x>6^5\Rightarrow x>7776\)

b.

ĐKXĐ: \(x>0\)

\(log_7x< 2\Rightarrow\left\{{}\begin{matrix}x>0\\x< 7^2\end{matrix}\right.\) \(\Rightarrow0< x< 49\)

c. 

\(log_2x\le3\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3^2\end{matrix}\right.\) \(\Rightarrow0< x\le9\)

d.

\(log_{\dfrac{1}{3}}x>27\Rightarrow\left\{{}\begin{matrix}x>0\\x< \left(\dfrac{1}{3}\right)^{27}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{3^{27}}\)

29 tháng 3 2016

Điều kiện x>0. Nhận thấy x=2 là nghiệm

- Nếu x>2 thì : \(\log_2x>\log_22=1;\log_5\left(2x+1\right)>\log_5\left(2.2x+1\right)=1\)

Suy ra phương trình vô nghiệm.

Tương tự khi 0<x<2

Đáp số x=2

30 tháng 3 2016

Đặt \(t=\log_2x\) ta có bất phương trình :

\(2t^3+5t^2+t-2\ge0\)

hay 

\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)

Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)

Suy ra nghiệm của bất phương trình là :

\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)

 

30 tháng 3 2016

Với điều kiện x>0. lấy Logarit cơ số 2 hai vế ta có :

\(\log_2x.\log_2x<5\Leftrightarrow-\sqrt{5}<\log_2x<\sqrt{5}\)

Từ đó suy ra, nghiệm của bất phương trình là :

\(2^{-\sqrt{5}}\)<x<\(2^{\sqrt{5}}\)

29 tháng 3 2016

Điều kiện x>0. Nhận thấy x=2 là nghiệm. 

Nếu x>2 thì

\(\frac{x}{2}>\frac{x+2}{4}>1\)\(\frac{x+1}{3}>\frac{x+3}{5}>1\)

Suy ra 

\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)

\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)

Suy ra vế trái < vế phải, phương trình vô nghiệm.

Đáp số x=2

NV
18 tháng 2 2022

ĐKXĐ: \(x;y>0\)

\(log_2x=-\dfrac{1}{3}log_2y\Rightarrow log_2x=log_2y^{-\dfrac{1}{3}}\)

\(\Rightarrow x=y^{-\dfrac{1}{3}}=\dfrac{1}{\sqrt[3]{y}}\Rightarrow y=\dfrac{1}{x^3}\)

Thế vào pt dưới: \(3^x+3^{\dfrac{1}{x^3}}=4\)

- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}3^x\ge3^1=3\\\dfrac{1}{x^3}>0\Rightarrow3^{\dfrac{1}{x^3}}>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm

- Với \(0< x< 1\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}>1\Rightarrow3^{\dfrac{1}{x^3}}>3\\3^x>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm

Vậy hệ đã cho vô nghiệm

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)