Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải bất pt:
\(\frac{1}{2}\)log2x - log5x > 1
ĐK;x>0<=> \(\frac{1}{2}\)log2x-log2x-log52>1
<=>\(\frac{1}{2}\)log2x>1+log52
<=> log2x>\(\frac{1+log_{ }^{ }}{2}\)( ví a=2>0)
<=>x>2\(\frac{1+log_{ }^{ }}{2}\)
Phương trình log2x+ 2log5x= 2+ log2x. log5x có tích các nghiệm là:
A. 21
B. 20
C. 22
D. 24
Chọn B
vậy tích 2 nghiệm của phương trình là 20
Cho phương trình log 2 x − x 2 − 1 . log 5 x − x 2 − 1 = log m x + x 2 − 1 . Có bao nhiêu giá trị nguyên dương khác 1 của m sao cho phương trình đã cho có nghiệm x lớn hơn 2?
A. Vô số
B. 3
C. 2
D. 1
Đáp án D
Cho phương trình log 2 x - x 2 - 1 . log 5 x - x 2 - 1 = log m x + x 2 - 1 .
Có bao nhiêu giá trị nguyên dương khác 1 của m sao cho phương trình đã cho có nghiệm x lớn hơn 2?
Phương trình log 2 x + log 4 x + log 6 x = log 3 x + log 5 x + log 7 x có bao nhiêu nghiệm?
A. Vô số nghiệm
B. 1
D. 0
A. 1
B. 0
D. Vô số nghiệm
Đáp án A
Phương trình log 2 x + log 4 x + log 6 x + log 8 x = log 3 x + log 5 x + log 7 x + log 9 x có số nghiệm là
B. 2
C. 3
D. 4
Chọn A
\(\text{Giải bất pt: }x\left(x-4\right)\sqrt{-x^2+4x}+\left(x+2\right)^2< 2\)
ĐK;x>0
<=> \(\frac{1}{2}\)log2x-log2x-log52>1
<=>\(\frac{1}{2}\)log2x>1+log52
<=> log2x>\(\frac{1+log_{ }^{ }}{2}\)( ví a=2>0)
<=>x>2\(\frac{1+log_{ }^{ }}{2}\)