CM với mọi n \(\in N\) \(2^n\ge n+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\left(1\right)\)
Với \(n=2\), BĐT \(\left(1\right)\) trở thành \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}>\sqrt{2}\) (đúng)
Giả sử \(\left(1\right)\) đúng với \(n=k\), nghĩa là \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}>\sqrt{k}\left(2\right)\)
Ta chứng minh \(\left(1\right)\) đúng với \(n=k+1\). Thật vậy, từ \(\left(2\right)\) suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k}+\dfrac{1}{\sqrt{k+1}}\)
Vì \(\sqrt{k}+\dfrac{1}{\sqrt{k+1}}=\dfrac{\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}>\sqrt{k+1}\)
Nên \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k+1}\)
Tức là \(\left(1\right)\) đúng với \(n=k+1\).
Theo nguyên lí quy nạp, (1) đúng với mọi số tự nhiên \(n>1\)
\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1
Suy ra tích này chia hết cho 3x4x5 = 60 (1)
Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)
Từ (1) và (2) suy ra đpcm
Cho hình thoi ABCD có cạnh là a. Gọi r1 và r2 laf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.
cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)
\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
- Với \(n=0\) thỏa mãn
- Giả sử BĐT đúng với \(n=k\) hay \(2^k\ge k+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(2^{k+1}\ge k+2\)
Thật vậy, ta có: \(2^{k+1}=2.2^k\ge2\left(k+1\right)=2k+2\ge k+2\) với mọi k tự nhiên (đpcm)
2n = 2 . 2 . 2 ... 2 (n thừa số 2) \(\ge\) 1 (1)
Vì n \(\in\) N nên do đó n + 1 \(\ge\) 1 (2)
Từ (1) và (2) suy ra 2n \(\ge\) n + 1 (dấu = xảy ra <=> n = 0)