Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt[k+1]{\dfrac{k+1}{k}}>1\) với \(k=1,2,...,n\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[k+1]{\dfrac{k+1}{k}}=\sqrt[k+1]{\dfrac{1.1...1}{k}\cdot\dfrac{k+1}{k}}\)
\(< \dfrac{1+1+1+...+1+\dfrac{k+1}{k}}{k+1}=\dfrac{k}{k+1}+\dfrac{1}{k}=1+\dfrac{1}{k\left(k+1\right)}\)
Suy ra \(1< \sqrt[k+1]{\dfrac{k+1}{k}}< 1+\left(\dfrac{1}{k}-\dfrac{1}{k+1}\right)\)
Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại được:
\(n< \sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}< n+1-\dfrac{1}{n}< n+1\)
Vậy phần nguyên a là n
Ace Legona
hoc24 toàn siêu nhân
lớp gì cũng biết AM-GM
giả / sử không có AM-GM ? toán học đi về đâu?
kể cũng lạ
đã là siêu nhân rồi sao lại phải hỏi nhỉ
Ta có:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{10}\)
...
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>100.\dfrac{1}{10}=10\).
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Ta có:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(...............\)
\(\dfrac{1}{\sqrt{98}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
Cộng theo vế ta có:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{99}{10}\)
Lại có \(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\) suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{100}{10}=10\)
Ta có:
1/√1>1/√100=1/10
1/√2>1/√100=1/10
........
1/√100=1/√100=1/10
Nên:
1/√1+1/√2+...+1/√100>1/10+1/10+...+1/10(100 phân số 1/10)
=1/√1+1/√2+..+1/√100>100/10
1/√1+1/√2+..+1/√100>10(đpcm)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Với \(x=\dfrac{16}{9}\)
\(A=\dfrac{\sqrt{\dfrac{16}{9}}+1}{\sqrt{\dfrac{16}{9}}-1}\)
\(A=\dfrac{\dfrac{4}{3}+1}{\dfrac{4}{3}-1}=\dfrac{\dfrac{7}{3}}{\dfrac{-1}{3}}=7:3:-1.3=-7\)
Với \(x=\dfrac{25}{9}\)
\(A=\dfrac{\sqrt{\dfrac{25}{9}}+1}{\sqrt{\dfrac{25}{9}}-1}\)
\(A=\dfrac{\dfrac{5}{3}+1}{\dfrac{5}{3}-1}=\dfrac{\dfrac{8}{3}}{\dfrac{2}{3}}=8:3:2.3=4\)
\(\rightarrowđpcm\)
Ta có :
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{`100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
........................................
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.......+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+........+\dfrac{1}{10}=\dfrac{100}{10}=10\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)
Giải:
Ta thấy:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
...................................
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}.\)
\(>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}.\)
\(=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (100 số hạng \(\dfrac{1}{10}\)).
\(=\dfrac{100}{10}=10.\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right).\)
Vậy..........
Ta có:
\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)
\(.............................\)
\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)
Cộng từng vế của các BĐT trên ta được:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)
Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)
Ta có:
1/ căn 1> 1/10
1/ căn 2> 1/10
...
1/ căn 99> 1/10
1/ căn 100 = 1/10
=> 1/ căn 1 + 1/ căn 2 + ... + 1/ căn 99 + 1/ căn 100 > 100 . 1/10 = 10 (đpcm)
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)
\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\left(1\right)\)
Với \(n=2\), BĐT \(\left(1\right)\) trở thành \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}>\sqrt{2}\) (đúng)
Giả sử \(\left(1\right)\) đúng với \(n=k\), nghĩa là \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}>\sqrt{k}\left(2\right)\)
Ta chứng minh \(\left(1\right)\) đúng với \(n=k+1\). Thật vậy, từ \(\left(2\right)\) suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k}+\dfrac{1}{\sqrt{k+1}}\)
Vì \(\sqrt{k}+\dfrac{1}{\sqrt{k+1}}=\dfrac{\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}>\sqrt{k+1}\)
Nên \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k+1}\)
Tức là \(\left(1\right)\) đúng với \(n=k+1\).
Theo nguyên lí quy nạp, (1) đúng với mọi số tự nhiên \(n>1\)