K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Ta có:

\(3-S=\left(x^2+4y^2+9z^2\right)-\left(2x+4y+6z\right)\)

\(\Rightarrow3-S=\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)+\left(9z^2-6z+1\right)-3\)

\(\Rightarrow6-S=\left(x-1\right)^2+\left(2y-1\right)^2+\left(3z-1\right)^2\ge0\)

\(\Rightarrow S\le6\)

\(S_{max}=6\) khi \(\left\{{}\begin{matrix}x-1=0\\2y-1=0\\3z-1=0\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

a: A=x^2-2x+1+4

=(x-1)^2+4>=4

Dấu = xảy ra khi x=1

b: =x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

c: =2x+8-x^2-4x

=-x^2-2x+8

=-x^2-2x-1+9

=-(x^2+2x+1)+9

=-(x+1)^2+9<=9

Dấu = xảy ra khi x=-1

d: =x^2-2xy+y^2+4y^2+4y+1+2

=(x-y)^2+(2y+1)^2+2>=2

Dấu = xảy ra khi x=y và 2y+1=0

=>x=y=-1/2

AH
Akai Haruma
Giáo viên
27 tháng 7

Lời giải:

$x^2+4y^2+9z^2=2x+4y+6z-3$

$\Leftrightarrow (x^2-2x+1)+(4y^2-4y+1)+(9z^2-6z+1)=0$

$\Leftrightarrow (x-1)^2+(2y-1)^2+(3z-1)^2=0$

Ta thấy: $(x-1)^2\geq 0; (2y-1)^2\geq 0; (3z-1)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì:

$(x-1)^2=(2y-1)^2=(3z-1)^2=0$

$\Leftrightarrow x=1; y=\frac{1}{2}; z=\frac{1}{3}$
Khi đó:

$xyz=1.\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$

29 tháng 6 2023

`P=1-x^2-y^2-z^2+2x+4y+6z=15-(x^2-2x+1)-(y^2-4y+4)-(z^2-6z+9)=15-[(x-1)^2+(y-2)^2+(z-3)^2]<=15AAx;y;z`

Dấu "=" xảy ra `<=>{(x-1=0),(y-2=0),(z-3=0):}<=>(x;y;z)=(1;2;3)`

Vậy `P_(max)=15<=>(x;y;z)=(1;2;3)`

------

Lưu ý: `P(k)^(2k)>=0` nên `-P(k)^(2k)<=0` xảy ra dấu bằng `<=>P(k)^(2k)=0<=>P(k)=0`

14 tháng 1 2016

Tuấn Nguyễn: 100% k sai

DD
13 tháng 11 2021

\(S=2x+4y+6z\le2\sqrt{\left[x^2+\left(2y\right)^2+\left(3z\right)^2\right]\left(1^2+1^2+1^2\right)}=2\sqrt{3.3}=6\)

Dấu \(=\)khi \(\hept{\begin{cases}x^2+4y^2+9z^2=3\\\frac{x}{1}=\frac{2y}{1}=\frac{3z}{1}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\).

\(4=x^2+y^2-xy=\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x-y\right)^2\ge\frac{1}{2}\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2\le8\)

Dấu \(=\)khi \(x=y=\pm2\).

\(4=x^2+y^2-xy=\frac{3}{2}\left(x^2+y^2\right)-\frac{1}{2}\left(x+y\right)^2\le\frac{3}{2}\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2\ge\frac{8}{3}\)

Dấu \(=\)khi \(x=-y=\pm\frac{2}{\sqrt{3}}\).

29 tháng 10 2017

\(B=2x+12y+6z-x^2-4y^2-z^2-18\)

\(B=-\left(x^2-2x+1\right)-\left[\left(2y\right)^2-12y+9\right]-\left(z^2-6z+9\right)\)

\(B=-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2\)

\(-\left(x-1\right)^2< 0\)Với mọi x

\(-\left(2y-3\right)^2< 0\)Với mọi y

\(-\left(z-3\right)^2< 0\)Với mọi z

Nên \(-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2< 0\)Với mọi x, y, z

Vậy GTLN của B \(\Leftrightarrow-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2=0\)

\(\left\{{}\begin{matrix}-\left(x-1\right)^2=0\\-\left(2y-3\right)^2=0\\-\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1,5\\z=3\end{matrix}\right.\)

29 tháng 10 2017

AK mk quên GTLN = 0 nhs bn !!!!

NV
6 tháng 2 2021

\(\overrightarrow{n_{\left(\alpha\right)}}=\left(1;2;3\right)\)

\(\overrightarrow{n_{\left(P\right)}}=\left(2;4;6\right)\)

\(\overrightarrow{n_{\left(R\right)}}=\left(2;-4;6\right)\)

\(\overrightarrow{n_{\left(Q\right)}}=\left(1;-1;2\right)\)

\(\overrightarrow{n_{\left(S\right)}}=\left(1;-1;2\right)\)

Tích vô hướng của \(\overrightarrow{n_{\left(\alpha\right)}}\) với cả 4 vecto kia đều khác 0 nên ko mặt phẳng nào vuông góc với \(\left(\alpha\right)\)

Bạn coi lại đề bài