Cho tam giác ABC.Gọi D là trung điểm của cạnh AC,Trên tia đối của cạnh DB,lấy điểm E sao cho DB=DE.Hãy xét các yếu tố bằng nhau của các tam giác
a/Tam giác ADE và tam giác CDB
b/Tam giác ADB và tam giác CDE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
c: Gọi BN cắt CM tại I
CB//MN
=>IB/IN=IC/IM=BC/MN=1/2
=>B là trung điểm của IN, C là trung điểm của IM
G là trọng tâm của ΔIMN và A là trung điểm của MN
nên I,G,A thẳng hàng
=>ĐPCM
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
a) xet tam giac ADE va tam giac CDB ta co
AD=DC ( D la trung diem AC)
DE=DB(gt)
goc ADE=goc CDB( 2 goc doi dinh)
--> tam giac ADE=tam giac CDB ( c-g-c)
b) xet tam giac ADB va tam giac CDE ta co
AD=DC ( D la trung diem AC)
DB=DE(gt)
goc ADB = goc CDE ( 2 goc doi dinh)
--> tam giac ADB=tam giac CDE (c-g-c)