K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Hình vẽ bn tự vẽ

Vì tam giác ABC đều nên góc BAC=60 độ

Mà góc EAD=góc BAC

Suy ra: góc EAD=60 độ

Ta lại có: AE=AD(gt)

Suy ra: tam AED đều có DM là đg trung tuyến

Suy ra DM cũng là đường cao

Xét tam giác vuông DMC có:

\(MP=\frac{1}{2}CD\)(1)

Tương tự: CN vuông góc AB

Xét tam giác vuông CND có: 

\(NP=\frac{1}{2}CD\)(2)

Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh

Suy ra: CD=BE

Mà tam giác AEB có: MN là đường trung bình

Suy ra: \(MN=\frac{1}{2}BE\)

Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)

Từ (1);(2) và (3)

Vậy tam giác MNP đều

Chúc bn học tốt.

Mik đi hc đến 8h30 tối mới về nên làm hơi trễ

17 tháng 9 2018

gọi M,N,P lần lượt là các trung điểm nha , mình ghi thiếu nha !

30 tháng 12 2018

Bạn tự vẽ hình nha:

a)Xét tứ giác AIHK, có:

góc A=90 độ(gt)

góc AIH =90 độ( D,H đx qua AB)

góc AKH=90 độ(H,E đx qua AC)

=> AIHK là hình chữ nhật

b)Vì D,H đx qua AB nên AB là đường trung trực của DH

=> AD=AH (1)

Vì H,E đx qua AC nên AC là đường trung trực của HE

=> AH=AE(2)

Từ (1) và (2) => AD=AE(*)

Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến

=> góc DAH=\(2.A_2\)

Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến

=> góc HAE=\(2.A_3\)

Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)

hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)

Từ (*) và (**) => D,E đx qua A (đpcm)

c) Xét tam giác AIH và tam giác AKH, có:

góc AIH= góc AKH=90 độ

AH chung

AI=HK(AIHK là hcn)

=> tam giác AIH=tam giác AKH(ch_cgv)(3)

Xét tam giác ADI và tam giác AHI, có:

\(A_1=A_2\)(AB là p/g của góc DAH)

AI là cạnh chung

góc DIA= góc HIA=90 độ

=> tam giác ADI = tam giác AHI(cgv-gnk)(4)

Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)

Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID

Ta có :

\(S_{AIHK}=AI.AH=s\)

=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)

=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)

\(=4.\frac{s}{2}=2.s\)

Vậy: diện tích \(S_{DHE}=2.s\)

Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!

 Chúc bạn học thật giỏi nha!!!!!!!!

a: Xét ΔMNP có

MD/ND=ME/EP

Do đó: DE//NP

b: XétΔMNI có DK//NI

nên DK/NI=MD/MN

hay DK/IP=3/7(1)

Xét ΔMIP có KE//IP

nên ME/MP=KE/IP

hay KE/IP=3/7(2)

Từ (1) và (2) suy ra DK=KE

hay K là trung điểm của DE