K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

30 tháng 12 2021

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

Suy ra: AH là tia phân giác của góc BAC

11 tháng 4 2018

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      \(AC^2+AB^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

\(\Rightarrow AC=12\left(cm\right)\)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\)  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

\(\Rightarrow\Delta BEH=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      AC2+AB2=BC2

⇒AC2=BC2−AB2=152−92=144

⇒AC=12(cm)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

⇒ΔABD=ΔEBD  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

⇒ΔBEH=ΔBAC  (Cạnh góc vuông và góc nhọn kề)

⇒BH=BC hay tam giác HBC cân tại B.

20 tháng 8 2015

a) xet tam giac ADE va tam giac CDB ta co

AD=DC ( D la trung diem AC)

DE=DB(gt)

goc ADE=goc CDB( 2 goc doi dinh)

--> tam giac ADE=tam giac CDB ( c-g-c)

b) xet tam giac ADB va tam giac CDE ta co

AD=DC ( D la trung diem AC)

DB=DE(gt)

goc ADB = goc CDE ( 2 goc doi dinh)

--> tam giac ADB=tam giac CDE (c-g-c)

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH