Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Suy ra: AH là tia phân giác của góc BAC
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\) (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
\(\Rightarrow\Delta BEH=\Delta BAC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.
Bài giải :
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
AC2+AB2=BC2
⇒AC2=BC2−AB2=152−92=144
⇒AC=12(cm)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
⇒ΔABD=ΔEBD (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
⇒ΔBEH=ΔBAC (Cạnh góc vuông và góc nhọn kề)
⇒BH=BC hay tam giác HBC cân tại B.
a) xet tam giac ADE va tam giac CDB ta co
AD=DC ( D la trung diem AC)
DE=DB(gt)
goc ADE=goc CDB( 2 goc doi dinh)
--> tam giac ADE=tam giac CDB ( c-g-c)
b) xet tam giac ADB va tam giac CDE ta co
AD=DC ( D la trung diem AC)
DB=DE(gt)
goc ADB = goc CDE ( 2 goc doi dinh)
--> tam giac ADB=tam giac CDE (c-g-c)
a: Xét ΔABD và ΔKBD có
BA=BK
góc ABD=góc KBD
BD chung
Do đó: ΔABD=ΔKBD
Suy ra: DA=DK
b: Ta có: ΔBAD=ΔBKD
nên góc BKD=góc BAD=90 độ
=>DK vuông góc với BC
=>DK//AH