cho các số dương a,b,c có tích =1
(a+1) (b+1) (c+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}a+1\ge2\sqrt{a}\left(1\right)\\b+1\ge2\sqrt{b}\left(2\right)\\c+1\ge2\sqrt{c}\left(3\right)\end{cases}}\)
Nhân theo vế của (1), (2), (3) ta có:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2^3\sqrt{abc}=8\)
Dấu "=" xảy ra khi \(a=b=c=1\)
bđt \(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\Sigma a^2+3\Sigma a+\Sigma_{cyc}ab^2+2\Sigma ab+3\)
\(\Leftrightarrow\)\(abc\left(a+b+c\right)+\Sigma_{sym}a^2b+\Sigma a^2+2\Sigma ab+\Sigma a\ge\Sigma a^2+3\Sigma a+\Sigma_{cyc}ab^2+2\Sigma ab\)
\(\Leftrightarrow\)\(a^2b+b^2c+c^2a\ge a+b+c\) (1)
Do abc=1 nên đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
(1) \(\Leftrightarrow\)\(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
\(\Leftrightarrow\)\(x^3+y^3+z^3\ge xy^2+yz^2+zx^2\) (2)
Lại có: \(x^3+y^3+y^3\ge3\sqrt[3]{x^3y^6}=3xy^2\)
Tương tự với y3, z3 => (2) => (1) => bđt cần cm
Dấu "=" xảy ra khi a=b=c=1
Áp dụng bất đẳng thức AM - GM cho từng cặp số không âm (với \(a,b,c>0\)), ta có:
\(a+1\ge2\sqrt{a}\) \(\left(1\right)\)
\(b+1\ge2\sqrt{b}\) \(\left(2\right)\)
\(c+1\ge2\sqrt{c}\) \(\left(3\right)\)
Nhân từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (do \(abc=1\))
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=1\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
\(\sum_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}>=\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
\(\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}>=\dfrac{2\left(a+b+c\right)^2}{\sum2\sqrt{2+2ab}}>=\dfrac{3}{2}\)
\(\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}>=\dfrac{3}{2}\)
Cộng các BĐT trên, ta được ĐPCM
Ta có:
\(\Sigma_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\Sigma_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)
Sử dụng BĐT Cauchy - Schwarz và AM - GM có:
\(\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{\Sigma2\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\dfrac{3}{2}\)
Tương tự: \(\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)
Cộng 2 BĐT ta được:
\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ca}}\ge3\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Vì a và 1 là 2 số dương \(\Rightarrow a+1\ge2\sqrt{a}\) (bđt AM - GM)
Vì b và 1 là 2 số dương \(\Rightarrow b+1\ge2\sqrt{b}\)(bđt AM - GM)
Vì c và 1 là 2 số dương \(\Rightarrow c+1\ge2\sqrt{c}\)(bđt AM - GM)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\) (đpcm)
BĐT \(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge a+b+c+ab+bc+ca\)
\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+a^2+b^2+c^2-\left(a+b+c\right)\ge0\)
Có: \(VT\ge\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+\left[\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\right]\ge0\)(chú ý: \(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\ge3\sqrt[3]{abc}\left(a+b+c\right)=3\left(a+b+c\right)\))
Ta có đpcm.
Có cách khác ^_^ mới nghĩ ra
BĐt <=> \(P\left(a,b,c\right)=a^2+b^2+c^2-\frac{1}{2}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge0\)
Không mất tính tổng quát , giả sử : \(a=min\left\{a,b,c\right\}\Rightarrow t=\sqrt{bc}\ge1\)
=> Chứng minh: \(P\left(a,b,c\right)\ge P\left(a,t,t\right)\)
Thật vậy , \(P\left(a,b,c\right)-P\left(a,t,t\right)=\left(\sqrt{b}-\sqrt{c}\right)^2\left[\left(\sqrt{b}+\sqrt{c}\right)^2-\frac{1}{2}\left(1+\frac{1}{bc}\right)\right]\)
\(\ge\left(\sqrt{b}-\sqrt{c}\right)^2\left[4-\frac{1}{2}\left(1+1\right)\right]\ge0\)
mặt khác: \(P\left(a,t,t\right)=P\left(\frac{t}{t^2},t,t\right)=\frac{\left(t-1\right)^2\left(3t^4+4t^3+5t^2+4t+2\right)}{2t^4}\ge0\)
=> BĐT được chứng minh . Đt xảy ra<=> a=b=c=1