K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Áp dụng BĐT AM-GM  ta có:

\(\hept{\begin{cases}a+1\ge2\sqrt{a}\left(1\right)\\b+1\ge2\sqrt{b}\left(2\right)\\c+1\ge2\sqrt{c}\left(3\right)\end{cases}}\)

Nhân theo vế của (1), (2), (3) ta có:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2^3\sqrt{abc}=8\)

Dấu "=" xảy ra khi \(a=b=c=1\)

28 tháng 3 2016

Áp dụng bất đẳng thức AM - GM cho từng cặp số không âm (với  \(a,b,c>0\)), ta có:

\(a+1\ge2\sqrt{a}\)  \(\left(1\right)\)

\(b+1\ge2\sqrt{b}\)  \(\left(2\right)\)

\(c+1\ge2\sqrt{c}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)  (do  \(abc=1\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

6 tháng 4 2017

Vì a và 1 là 2 số dương \(\Rightarrow a+1\ge2\sqrt{a}\) (bđt AM - GM)

Vì b và 1 là 2 số dương \(\Rightarrow b+1\ge2\sqrt{b}\)(bđt AM - GM)

Vì c và 1 là 2 số dương \(\Rightarrow c+1\ge2\sqrt{c}\)(bđt AM - GM)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\) (đpcm)

17 tháng 11 2019

BĐT \(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge a+b+c+ab+bc+ca\)

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+a^2+b^2+c^2-\left(a+b+c\right)\ge0\)

Có: \(VT\ge\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+\left[\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\right]\ge0\)(chú ý: \(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\ge3\sqrt[3]{abc}\left(a+b+c\right)=3\left(a+b+c\right)\))

Ta có đpcm.

17 tháng 11 2019

Có cách khác ^_^ mới nghĩ ra

BĐt <=> \(P\left(a,b,c\right)=a^2+b^2+c^2-\frac{1}{2}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge0\)

Không mất tính tổng quát , giả sử : \(a=min\left\{a,b,c\right\}\Rightarrow t=\sqrt{bc}\ge1\)

=> Chứng minh: \(P\left(a,b,c\right)\ge P\left(a,t,t\right)\)

Thật vậy , \(P\left(a,b,c\right)-P\left(a,t,t\right)=\left(\sqrt{b}-\sqrt{c}\right)^2\left[\left(\sqrt{b}+\sqrt{c}\right)^2-\frac{1}{2}\left(1+\frac{1}{bc}\right)\right]\)

                                                                  \(\ge\left(\sqrt{b}-\sqrt{c}\right)^2\left[4-\frac{1}{2}\left(1+1\right)\right]\ge0\)

mặt khác: \(P\left(a,t,t\right)=P\left(\frac{t}{t^2},t,t\right)=\frac{\left(t-1\right)^2\left(3t^4+4t^3+5t^2+4t+2\right)}{2t^4}\ge0\)

=> BĐT được chứng minh . Đt xảy ra<=> a=b=c=1

7 tháng 4 2020

Biến đổi

\(a+2-\frac{a+2}{b+2}=\frac{a+2}{2}+\frac{\left(a+2\right)b}{2\left(b+2\right)}\)

Đưa về bài toán chứng minh BĐT

\(\frac{a+b+c}{2}+\frac{\left(a+2\right)b}{2\left(b+2\right)}+\frac{\left(b+2\right)c}{2\left(c+2\right)}+\frac{\left(c+a\right)a}{2\left(a+2\right)}\ge3\)

Áp dụng BĐT Cauchy cho 3 số dương ta có:

\(a+b+c\ge3;\frac{\left(a+2\right)b}{b+2}+\frac{\left(b+2\right)c}{c+2}+\frac{\left(c+2\right)a}{a+2}\ge3\)

Cách giải: Hai Anh Bui

25 tháng 1 2022

Theo BĐT Cauchy Schwarz 

\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=9\)

Dấu ''='' xảy ra khi a = b = c = 1/3 

12 tháng 3 2021

Bài này anh Lâm làm rồi mà

12 tháng 3 2021

Sigma CTV, mk ko hiểu lắm. Bn có thể giải ra chi tiết theo cách lp 8 cho mk dễ hiểu đc ko?? Cám ơn bn rất nhiều