Cho tam giác ABC vuông tại A, đường cao AH. Tính chu vi tam giác ABC, biết rằng CH = 20,3 cm và góc B bằng 620 . (Chính xác dến 6 chữ số thập phân)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{CAH}=\widehat{B}\left(=90^0-\widehat{C}\right)\)
mà \(\widehat{B}=60^0\)
nên \(\widehat{CAH}=60^0\)
Xét ΔAHC vuông tại H có
\(HC=AC\cdot\sin\widehat{CAH}\)
\(\Leftrightarrow AC=\dfrac{20}{\dfrac{\sqrt{3}}{2}}=\dfrac{40\sqrt{3}}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(BC=AC:\dfrac{\sqrt{3}}{2}\)
\(=\dfrac{40\sqrt{3}}{3}\cdot\dfrac{2}{\sqrt{3}}=\dfrac{80}{3}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+CA\)
\(=\dfrac{40\sqrt{3}}{3}+\dfrac{40}{3}+\dfrac{80}{3}\)
\(=\dfrac{120+40\sqrt{3}}{3}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
\(BC=\dfrac{15^2}{9}=25\left(cm\right)\)
BH=25-9=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AB=căn(16^2+12^2)=20cm
C=16+12+20=28+20=48cm
Xét ΔABC vuông tại A có sin B=AC/BC=3/5
nên góc B=37 độ
Xét △AHB và △CHA có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ \(\widehat{HAB}\))
=> △AHB đồng dạng với △CHA (g.g)
=> \(\frac{AH}{CH}=\frac{AB}{CA}=\frac{AH+AB+HB}{CH+CA+HA}=\frac{18}{24}=\frac{3}{4}\left(1\right)\)
Xét △AHB và △CAB ta có:
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}\)là góc chung
=> △AHB đồng dạng với △CAB (g.g)
=> \(\frac{AH}{CA}=\frac{AB}{CB}=\frac{AH+AB+HB}{CA+CB+AB}=\frac{18}{CA+CB+AB}\left(2\right)\)
Từ (1) ta đặt AB=3k, CA=4k. Xét △ABC vuông tại A
CB2=AB2+CA2=(3k)2+(4k)2=(5k)2
nên CB=5k. Do đó: \(\frac{AB}{CB}=\frac{3}{5}\)
Từ (2) => \(\frac{3}{5}=\frac{18}{P_{\text{△}ABC}}\)
Vậy \(P_{\text{△}ABC}=18\cdot\frac{5}{3}=30\left(cm\right)\)
Gọi \(P_1,P_2,P_3\) lần lượt là chu vi của tam giác \(AHB;AHC;ABC\) ;
\(\Delta AHB\infty\Delta CHA\)suy ra
\(\frac{P_1}{P_2}=\frac{AB}{CA}\) (1)
Từ (1) , ta có:
\(\frac{AB}{AC}=\frac{18}{24}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Leftrightarrow\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{BC^2}{5^2}\)
\(\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}\Rightarrow AB:AC:BC=3:4:5\)
\(P_1:P_2:P_3=AB:AC:BC=3:4:5\)
Vậy nếu \(P_1=18cm,\) ,\(P_2=24cm\) thì \(P_3=30cm\) .
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{C}=28^0\)
Xét ΔACH vuông tại H có
\(AH=CH\cdot\tan28^0\)
\(=20.3\cdot\tan28^0\)
\(\Leftrightarrow AH\simeq10,793701\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AH^2+CH^2=AC^2\)
\(\Leftrightarrow AC^2=10.793701^2+20.3^2\)
hay \(AC\simeq22,991172\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\simeq5,739112\left(cm\right)\)
\(\Leftrightarrow BC\simeq26.093112\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB\simeq12,339226\left(cm\right)\)
Chu vi tam giác ABC là:
C=AB+AC+BC
\(=12.339226+22.991172+26.093112\)
\(=64.423510\left(cm\right)\)