tìm các số nguyên x, y sao cho 5x2+2xy+y2-4x-40=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1)
để pt có nghiệm x nguyên thì delta phải là số chính phương
xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x
-nghĩ vậy chả biết có đúng không <(")
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
5x2+2xy+y2-4x-40=0
<=>4x2-4x+1+x2+2xy+y2-41=0
<=>(2x-1)2+(x+y)2=41=16+25=25+16
TH1:
(2x-1)2=16 và (x+y)2=25
<=>2x-1=4 hoặc 2x-1=-4 và x+y=5 hoặc x+y=-5
<=>x=5/2(L) hoặc x=-3/2 (L)
Vậy TH này ko thỏa mãn
TH2:
(2x-1)2=25 và (x+y)2=16
<=>2x-1=5 hoặc 2x-1=-5 và x+y=4 hoặc x+y=-4
<=>x=3(nhận) hoặc x=-2 (nhận) và y=1(nhận) hoặc y=6(nhận) hoặc y=-7 (nhận) hoặc y=-2(nhận)
Vậy x={3;-2} ; y={1;6;-7;-2}